Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Activating supports“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Activating supports" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Activating supports"
Prades, Floran, Jean-Pierre Broyer, Islem Belaid, Olivier Boyron, Olivier Miserque, Roger Spitz und Christophe Boisson. „Borate and MAO Free Activating Supports for Metallocene Complexes“. ACS Catalysis 3, Nr. 10 (16.09.2013): 2288–93. http://dx.doi.org/10.1021/cs400655y.
Der volle Inhalt der QuelleMantanona, Alex J., Katelyn Wood, Yann Schrodi und Simon J. Garrett. „Activating Ru nanoparticles on oxide supports for ring-opening metathesis polymerization“. Dalton Transactions 47, Nr. 23 (2018): 7754–60. http://dx.doi.org/10.1039/c8dt00354h.
Der volle Inhalt der QuelleMuro, Ryunosuke, Takeshi Nitta, Toshiyuki Okada, Hitoshi Ideta, Takeshi Tsubata und Harumi Suzuki. „The Ras GTPase-Activating Protein Rasal3 Supports Survival of Naive T Cells“. PLOS ONE 10, Nr. 3 (20.03.2015): e0119898. http://dx.doi.org/10.1371/journal.pone.0119898.
Der volle Inhalt der QuelleSubrizi, Fabiana, Marcello Crucianelli, Valentina Grossi, Maurizio Passacantando, Lorenzo Pesci und Raffaele Saladino. „Carbon Nanotubes as Activating Tyrosinase Supports for the Selective Synthesis of Catechols“. ACS Catalysis 4, Nr. 3 (05.02.2014): 810–22. http://dx.doi.org/10.1021/cs400856e.
Der volle Inhalt der QuelleSkowronek, Patrycja, und Aneta Strachecka. „Cannabidiol (CBD) Supports the Honeybee Worker Organism by Activating the Antioxidant System“. Antioxidants 12, Nr. 2 (27.01.2023): 279. http://dx.doi.org/10.3390/antiox12020279.
Der volle Inhalt der QuelleValentin, P., und O. Schmetzer. „402 B cell activating factor, BAFF, supports MC development from CD34+ stem cells“. Journal of Investigative Dermatology 136, Nr. 9 (September 2016): S229. http://dx.doi.org/10.1016/j.jid.2016.06.422.
Der volle Inhalt der QuelleWhitmore, Kathryn F., James S. Chisholm und Lauren Fletcher. „Fostering, Activating, and Curating: Approaching Books about Social Injustices with the Arts“. Language Arts 98, Nr. 1 (01.09.2020): 7–18. http://dx.doi.org/10.58680/la202030812.
Der volle Inhalt der QuelleAlon, R., P. D. Kassner, M. W. Carr, E. B. Finger, M. E. Hemler und T. A. Springer. „The integrin VLA-4 supports tethering and rolling in flow on VCAM-1.“ Journal of Cell Biology 128, Nr. 6 (15.03.1995): 1243–53. http://dx.doi.org/10.1083/jcb.128.6.1243.
Der volle Inhalt der QuelleMetelli, Alessandra, Bill Wu, Brian Riesenberg, Caroline Wallace Fugle, Shaoli Sun, Bei Liu und Zihai Li. „GARP-TGFβ Axis on Activated Platelets Supports Tumor Progression“. Journal of Immunology 198, Nr. 1_Supplement (01.05.2017): 126.17. http://dx.doi.org/10.4049/jimmunol.198.supp.126.17.
Der volle Inhalt der QuelleChen, Jasper R., Jincheng Han, Cullen M. Taniguchi und Ronald A. DePinho. „Abstract 4757: Loss of KDM5A supports KRAS-driven pancreatic cancer“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 4757. http://dx.doi.org/10.1158/1538-7445.am2023-4757.
Der volle Inhalt der QuelleDissertationen zum Thema "Activating supports"
Sauter, Dominique. „Développement de nouveaux supports activateurs solides pour la polymérisation des oléfines“. Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1249.
Der volle Inhalt der QuelleBisiriyu, Muhammad Taoheed. „Préparation et Caractérisation de Nouveaux Catalyseurs Supportés à base de Rhénium pour la Metathèse des Oléfiness“. Electronic Thesis or Diss., Lyon 1, 2023. https://n2t.net/ark:/47881/m6sb45v3.
Der volle Inhalt der QuelleRepositioned heterogeneous catalysts based on rhenium hold a unique position in olefin metathesis, a widely used reaction in various industrial processes, due to their ability to catalyze the exchange of olefinic fragments at room temperature. Among the catalysts described in the literature, materials obtained by activating methylrhenium trioxo (MTO) on supports containing Lewis acids, such as alumina, silica-alumina, and zinc chloride-modified alumina, have shown high initial activities in olefin metathesis. However, these catalytic systems have certain limitations, such as a low proportion of active sites and rapid deactivation. The aim of this thesis was to develop a new method for synthesizing supported catalysts that involves ligand exchange between activating supports and the MTO precursor. The general strategy is to design activating supports bearing alkyl and/or chloride ligands that, upon transfer to rhenium followed by α-H abstraction, not only increase the fraction of active "carbene" sites but also exhibit significant activity in olefin metathesis. Thus, the first part of this work focused on the development of aluminum-based activating supports. The targeted activating supports, comprising Al-CH2tBu or Al-Cl fragments, are formed by surface organometallic chemistry grafting of [Al(CH2tBu)3] or [Al(CH2tBu)2Cl]2 onto dehydroxylated silica or alumina at 700°C or 200°C. The structure of the resulting materials, determined by mass balance analysis, DRIFT spectroscopy, and solid-state NMR, depends on the support dehydroxylation temperature, as well as the choice of precursor and solvent. For example, [Al(CH2tBu)3] reacts with silica (SiO2-700) to selectively yield monopodal species in ether, [≡SiO-Al(CH2tBu)(Et2O)], while in pentane, the major species obtained is bipodal, [(≡SiO)2Al(CH2tBu)], with the transfer of a neopentyl ligand to silicon through siloxane bridge opening. The second step involves the activation of MTO on these activating supports. For instance, the activation of MTO on [(≡SiO)2Al(CH2tBu)] results in the transfer of a neopentyl ligand, forming a penta-coordinated species with the structure [(≡SiO)2AlO-Re(=O)2(Me)CH2tBu)]. This species is characterized by mass balance analysis, DRIFT spectroscopy, solid-state NMR and EXAFS. Upon heating to 70°C, this species undergoes a α-H abstraction to yield a supported catalyst with a rhenium-carbene fragment. This new catalytic system exhibits better catalytic performances for propylene metathesis, compared to the classical MTO/γ-Al2O3 catalyst. The better activity is primarily attributed to a higher proportion of active sites achieved through this new MTO activation strategy involving a ligand exchange. This is the first example of MTO supported on a functionalized silica that is an active catalyst for olefin metathesis
Brimacombe, Lyn M. „Activation of methane on supported metal catalysts“. Thesis, University of Ottawa (Canada), 1991. http://hdl.handle.net/10393/7805.
Der volle Inhalt der QuelleNorelus, Wesley. „Etude théorique de la réaction de fischer-tropsch : l'effet du support“. Paris 6, 2013. http://www.theses.fr/2013PA066430.
Der volle Inhalt der QuelleThe goal of this work is to study the well-known support effect in catalysis taking as an example the Fischer-Tropsch catalysis. We use a TiC(100) surface to support a an iron cluster, Fe4. When iron atoms are adsorbed, they tend to form a plat cluster and not to spread off along the surface. Carbon monoxide adsorption is modified by the support: the interaction strength between CO and the iron cluster is indeed larger in the presence of the support. In the case of supported cluster, C-O bound is more elongated, which shows an activation of CO. Then, the dissociation energy barrier for CO dissociation should be smaller on a supported Fe4 cluster than for free cluster. In addition, this study allows us to show that in our system, depending on the used functional, results can be different but the trends stay the same
Xing, Junyi. „Activation of small molecules by solid-supported frustrated Lewis pairs“. Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:cb32a5a7-8613-413f-b47c-80674e904c3a.
Der volle Inhalt der QuelleDalle, Kristian Erwin. „Bioinspired Activation of Oxygen with Pyrazole-Supported Dinuclear Copper Complexes“. Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2014. http://hdl.handle.net/11858/00-1735-0000-002B-7C1A-B.
Der volle Inhalt der QuelleKushch, S. D., N. S. Kuyunko, A. A. Arbuzov, N. N. Dremova und V. E. Muradyan. „Pt supported on reduced graphite oxide catalysts for H2 activation“. Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35570.
Der volle Inhalt der QuelleKessler, Phillip R. „Ready Reserve Force : West Coast activation in support of Operation Desert Shield“. Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/26719.
Der volle Inhalt der QuelleFelgines, Avenier Priscilla. „Activation de l’azote moléculaire et activation de l’ammoniac par des hydrures de tantale supportés sur silice développées par chimie organométallique de surface“. Lyon 1, 2007. http://www.theses.fr/2007LYO10004.
Der volle Inhalt der QuelleThis thesis has focused on the development of the Surface Organometallic Chemistry of metal-imido and -amido species from ammonia and dinitrogen. The complex [(SiO)2Ta(=NH)(NH2)], 2, as well as its ammonia adduct [(SiO)2Ta(=NH)(NH2)(NH3)], 2NH3, were prepared by two original ways: by activation of ammonia at room temperature and by reduction of dinitrogen by dihydrogen on tantalum hydrides [(SiO)2TaH], 1a, and [(SiO)2TaH3], 1b. These complexes were fully characterized by IR, EXAFS, elemental analysis and by advanced solid-state NMR techniques, such as 1H-15N HETCOR and 2D proton double and triple quantum. Some intermediates of the reduction of dinitrogen were observed, that led to the proposition of an original mechanism for this reaction, different from those established in homogeneous, heterogeneous or enzymatic catalysis. Tantalum-promoted formation of silylamido, [SiNH2], by amination of surface silanes, occurs during the formation of 2. Finally, the stoichiometric reactivity of 2 toward phenylacetylene and its catalytic activity toward SiH4 and NH3 were explored
Dodaro, Maria. „Active Cities for Activation Policies. Entrepreneurship support and young people in Milan and Barcelona“. Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/668708.
Der volle Inhalt der QuelleBücher zum Thema "Activating supports"
1951-, Hobfoll Stevan E., Hrsg. Predicting, activating and facilitating social support. London: Sage, 1990.
Den vollen Inhalt der Quelle finden(Firm), Knovel, Hrsg. Electrochemical activation of catalysis: Promotion, electrochemical promotion, and metal-support interactions. New York: Kluwer Academic/Plenum Publishers, 2001.
Den vollen Inhalt der Quelle findenG, Vayenas C., Hrsg. Electrochemical activation of catalysis: Promotion, electrochemical promotion, and metal-support interactions. New York: Kluwer Academic/Plenum Publishers, 2001.
Den vollen Inhalt der Quelle findenKessler, Phillip R. Ready Reserve Force: West Coast activation in support of Operation Desert Shield. Monterey, Calif: Naval Postgraduate School, 1991.
Den vollen Inhalt der Quelle findenBaryshev, Ruslan. Proactive library in the information and educational environment of the University. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1123649.
Der volle Inhalt der QuelleQuain, Angela, und Anne M. Comi. Sturge-Weber Syndrome and Related Cerebrovascular Malformation Syndromes. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199937837.003.0112.
Der volle Inhalt der QuelleKwo, Ora. Activating Peer Support: A Strategic Resource for Quality Enhancement in the Teaching Practicum. Hong Kong University Press, 1999.
Den vollen Inhalt der Quelle findenVayenas, Costas G., Symeon Bebelis und Costas Pliangos. Electrochemical Activation of Catalysis: Promotion Electrochemical Promotion and Metal-Support Interactions. Kap/Plenum (E), 2002.
Den vollen Inhalt der Quelle findenVayenas, Costas G., Symeon Bebelis, Costas Pliangos, Susanne Brosda und Demetrios Tsiplakides. Electrochemical Activation of Catalysis: Promotion, Electrochemical Promotion, and Metal-Support Interactions. Springer, 2002.
Den vollen Inhalt der Quelle findenVayenas, Costas G. Electrochemical Activation of Catalysis: "Promotion, Electrochemical Promotion, And Metal-Support Interactions". Springer, 2013.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Activating supports"
Mohiuddin, Maliha Binte, und Michael Jabot. „Activating Education for Sustainable Development Goals Through YouthMappers“. In Sustainable Development Goals Series, 93–99. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05182-1_8.
Der volle Inhalt der QuelleAlmeida, Larissa. „Creative tourism as a local development strategy.“ In Creative tourism: activating cultural resources and engaging creative travellers, 179–91. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789243536.0024.
Der volle Inhalt der QuelleDiaz, Joseph O. Prewitt. „Activating Community Resilience Through Community Capitals After COVID-19“. In Mental Health and Psychosocial Support during the COVID-19 Response, 15–22. New York: Apple Academic Press, 2023. http://dx.doi.org/10.1201/9781003347620-3.
Der volle Inhalt der QuelleKincade, P. W., K. Medina, C. E. Pietrangeli, S.-I. Hayashi und A. E. Namen. „Stromal Cell Lines which Support Lymphocyte Growth“. In Mechanisms of Lymphocyte Activation and Immune Regulation III, 227–34. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5943-2_25.
Der volle Inhalt der QuelleWang, Defeng, Lin Shi, Daniel S. Yeung, Pheng-Ann Heng, Tien-Tsin Wong und Eric C. C. Tsang. „Support Vector Clustering for Brain Activation Detection“. In Lecture Notes in Computer Science, 572–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11566465_71.
Der volle Inhalt der QuelleQuade, B., C. J. O’Leary und O. Dupper. „Activation from Income Support in the US“. In Bringing the Jobless into Work?, 345–414. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77435-8_9.
Der volle Inhalt der QuelleKarayannis, N. M., B. V. Johnson, C. R. Hoppin und H. M. Khelghatian. „Highly Active Supported Propylene Polymerization Catalysts Prepared by Activation of Supports Derived from Precomplexed Magnesium Alkyls“. In Transition Metals and Organometallics as Catalysts for Olefin Polymerization, 231–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83276-5_24.
Der volle Inhalt der QuelleFarmer, Jane, Anthony McCosker, Kath Albury und Amir Aryani. „Activating for a Data-Capable Future“. In Data for Social Good, 89–112. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5554-9_4.
Der volle Inhalt der QuelleVernooij-Dassen, Myrra, und Carolien Lamers. „Activation of care-giver coping processes through professional support“. In Care-Giving in Dementia, 178–88. London: Routledge, 2021. http://dx.doi.org/10.4324/9781315830926-15.
Der volle Inhalt der QuelleNiccolai, Gerald P., und Jean-Marie Basset. „New Processes for Carbon-Carbon Bond Activation Catalysed by Oxide Supported Surface Organometallic Complexes“. In Catalytic Activation and Functionalisation of Light Alkanes, 111–24. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-0982-8_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Activating supports"
Park, Kwan-Hee, und Ho-Young Lee. „Abstract 3553: Mutant KRas-mediated AKT2 activation supports lung cancer growth by activating complex II-driven mitochondrial metabolism“. In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-3553.
Der volle Inhalt der QuelleLaakso, Mikko-Jussi, Lauri Malmi, Ari Korhonen, Teemu Rajala, Erkki Kaila und Tapio Salakoski. „Using Roles of Variables to Enhance Novice's Debugging Work“. In InSITE 2008: Informing Science + IT Education Conference. Informing Science Institute, 2008. http://dx.doi.org/10.28945/3229.
Der volle Inhalt der QuelleHsieh, Kathryn. „Activating Support for Students Experiencing Housing Insecurity“. In 2021 AERA Annual Meeting. Washington DC: AERA, 2021. http://dx.doi.org/10.3102/1687541.
Der volle Inhalt der QuelleMilovanovic, Julie, Mo Hu, Tripp Shealy und John Gero. „Exploration of the Dynamics of Neuro-Cognition During TRIZ“. In ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-70412.
Der volle Inhalt der QuelleBrant, David A., und Daniel P. Miranker. „Index support for rule activation“. In the 1993 ACM SIGMOD international conference. New York, New York, USA: ACM Press, 1993. http://dx.doi.org/10.1145/170035.170047.
Der volle Inhalt der QuelleYi, Yu, Xiaodong Chu und Yutian Liu. „Activating Reactive Power Support from Active Distribution Systems“. In 2018 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 2018. http://dx.doi.org/10.1109/pesgm.2018.8586490.
Der volle Inhalt der QuelleZhou, Xianlian, Xinyu Chen, Paulien E. Roos und Phillip Whitley. „Effects of Head Supported Mass on Predicted Neck Musculoskeletal Loadings During Walking and Running“. In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97389.
Der volle Inhalt der QuelleDahl, Martin J., Tiantian Li, Matthew R. Nassar, Mara Mather und Markus Werkle-Bergner. „Locus coeruleus-related insula activation supports implicit learning“. In 2023 Conference on Cognitive Computational Neuroscience. Oxford, United Kingdom: Cognitive Computational Neuroscience, 2023. http://dx.doi.org/10.32470/ccn.2023.1383-0.
Der volle Inhalt der QuelleBrand, Markus, Stefan Ramson, Jens Lincke und Robert Hirschfeld. „Explicit Tool Support for Implicit Layer Activation“. In COP '22: International Workshop on Context-Oriented Programming and Advanced Modularity. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3570353.3570355.
Der volle Inhalt der QuelleBrandon, Jim. „Activating Overall Instructional Leadership: Creating District Conditions for Informed Instructional Support“. In 2021 AERA Annual Meeting. Washington DC: AERA, 2021. http://dx.doi.org/10.3102/1690689.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Activating supports"
Lamberti, Gianfranco, Laura Pelizzari, Milena Fontana, Paola Gandolfi und Gianluca Ciardi. Can a lower limb-centered movement training inhibit overactive bladder? Systematic review of literature. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, Juli 2022. http://dx.doi.org/10.37766/inplasy2022.7.0099.
Der volle Inhalt der QuelleMcElhaney, Kevin, Anthony Baker, Carly Chillmon, Zareen Kasad, Babe Liberman und Jeremy Roschelle. An Initial Logic Model to Guide OpenSciEd Research: Updated Version. Digital Promise, März 2022. http://dx.doi.org/10.51388/20.500.12265/152.
Der volle Inhalt der QuelleManthiram, Arumugam, und S. Landsberger. 81.114- University Reactor Infrastructure and Education Support / Prompt Gamma-ray Activation Analysis of Lithioum Ion Battery Cathodes. Office of Scientific and Technical Information (OSTI), November 2006. http://dx.doi.org/10.2172/894912.
Der volle Inhalt der QuelleNavarro, Jorge, Scott Byers, Randal Pudelek, Geoffrey Deichert, Young Soo Kwon und Russ Wools. Development of an Activation Analysis Methodology to Support the Disposal of the High Flux Isotope Reactor Original Reflector Container. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1817488.
Der volle Inhalt der QuelleNavarro, Jorge, Young Soo Kwon, Randal Pudelek, Geoffrey Deichert und Russ Wools. Development of an Activation Analysis Methodology to Support the Disposal of the High Flux Isotope Reactor Metal Pool Waste. Office of Scientific and Technical Information (OSTI), Oktober 2021. http://dx.doi.org/10.2172/1828260.
Der volle Inhalt der QuelleSavaldi-Goldstein, Sigal, und Todd C. Mockler. Precise Mapping of Growth Hormone Effects by Cell-Specific Gene Activation Response. United States Department of Agriculture, Dezember 2012. http://dx.doi.org/10.32747/2012.7699849.bard.
Der volle Inhalt der QuelleAbdula, Andrii I., Halyna A. Baluta, Nadiia P. Kozachenko und Darja A. Kassim. Peculiarities of using of the Moodle test tools in philosophy teaching. [б. в.], Juli 2020. http://dx.doi.org/10.31812/123456789/3867.
Der volle Inhalt der QuelleNaim, Michael, Andrew Spielman, Shlomo Nir und Ann Noble. Bitter Taste Transduction: Cellular Pathways, Inhibition and Implications for Human Acceptance of Agricultural Food Products. United States Department of Agriculture, Februar 2000. http://dx.doi.org/10.32747/2000.7695839.bard.
Der volle Inhalt der QuelleSessa, Guido, und Gregory Martin. Role of GRAS Transcription Factors in Tomato Disease Resistance and Basal Defense. United States Department of Agriculture, 2005. http://dx.doi.org/10.32747/2005.7696520.bard.
Der volle Inhalt der QuelleMiller, Gad, und Jeffrey F. Harper. Pollen fertility and the role of ROS and Ca signaling in heat stress tolerance. United States Department of Agriculture, Januar 2013. http://dx.doi.org/10.32747/2013.7598150.bard.
Der volle Inhalt der Quelle