Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Actinium“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Actinium" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Actinium"
WALL, GREG. „ACTINIUM“. Chemical & Engineering News 81, Nr. 36 (08.09.2003): 162. http://dx.doi.org/10.1021/cen-v081n036.p162.
Der volle Inhalt der QuelleDeblonde, Gauthier J. P., und Rebecca J. Abergel. „Active actinium“. Nature Chemistry 8, Nr. 11 (21.10.2016): 1084. http://dx.doi.org/10.1038/nchem.2653.
Der volle Inhalt der QuelleGyurkocza, Boglarka, Rajneesh Nath, Stuart Seropian, Hannah Choe, Mark R. Litzow, Nebu V. Koshy, Patrick Stiff et al. „Clinical Experience in the Randomized Phase 3 Sierra Trial: Anti-CD45 Iodine (131I) Apamistamab [Iomab-B] Conditioning Enables Hematopoietic Cell Transplantation with Successful Engraftment and Acceptable Safety in Patients with Active, Relapsed/Refractory AML Not Responding to Targeted Therapies“. Blood 138, Supplement 1 (05.11.2021): 1791. http://dx.doi.org/10.1182/blood-2021-148497.
Der volle Inhalt der QuelleEliav, Ephraim, Sergei Shmulyian, Uzi Kaldor und Yasuyuki Ishikawa. „Transition energies of lanthanum, actinium, and eka-actinium (element 121)“. Journal of Chemical Physics 109, Nr. 10 (08.09.1998): 3954–58. http://dx.doi.org/10.1063/1.476995.
Der volle Inhalt der QuelleYushchenko, V., V. Gopka, A. V. Yushchenko, A. Shavrina, Ya Pavlenkо und S. Vasil’eva. „ACTINIUM ABUNDANCES IN STELLAR ATMOSPHERES“. Odessa Astronomical Publications 34 (03.12.2021): 70–73. http://dx.doi.org/10.18524/1810-4215.2021.34.244288.
Der volle Inhalt der QuelleDurrani, Matin. „From actinium to zinc“. Physics World 32, Nr. 8 (August 2019): 50. http://dx.doi.org/10.1088/2058-7058/32/8/39.
Der volle Inhalt der QuelleZielińska, B., und A. Bilewicz. „The hydrolysis of actinium“. Journal of Radioanalytical and Nuclear Chemistry 261, Nr. 1 (2004): 195–98. http://dx.doi.org/10.1023/b:jrnc.0000030956.61947.c5.
Der volle Inhalt der QuelleTsoupko-Sitnikov, V., Yu Norseev und V. Khalkin. „Generator of actinium-225“. Journal of Radioanalytical and Nuclear Chemistry Articles 205, Nr. 1 (April 1996): 75–83. http://dx.doi.org/10.1007/bf02040552.
Der volle Inhalt der QuellePratiwi, Anita Puji, Trapsilo Prihandono und Sri Handono Budi Prastowo. „Numerical Solution of Radioactive Core Decay Activity Rate of Actinium Series Using Matrix Algebra Method“. Jurnal Penelitian Pendidikan IPA 7, Nr. 3 (07.07.2021): 395. http://dx.doi.org/10.29303/jppipa.v7i3.716.
Der volle Inhalt der QuelleHoffman, Darleane C. „Glenn Theodore Seaborg. 19 April 1912 — 25 February 1999“. Biographical Memoirs of Fellows of the Royal Society 53 (Januar 2007): 327–38. http://dx.doi.org/10.1098/rsbm.2007.0021.
Der volle Inhalt der QuelleDissertationen zum Thema "Actinium"
Waldek, Achim Marcus. „Bestimmung der Ionisationsenergie von Actinium und Ultraspurenanalyse von Plutonium mit resonanter Ionisationsmassenspektrometrie (RIMS)“. [S.l. : s.n.], 2000. http://ArchiMeD.uni-mainz.de/pub/2001/0071/diss.pdf.
Der volle Inhalt der QuelleNiese, Siegfried. „Discovery of actinium and the thorium isotope 230Th“. Siegfried Niese, 2017. https://slub.qucosa.de/id/qucosa%3A7825.
Der volle Inhalt der QuelleEntdeckung des Actiniums und des Thoriumisotopes 230Th Im Jahr 1902 entdeckte Friedrich Giesel nach Mitfällung von Lanthan aus Proben der chemischen Behandlung von Uranmineralen ein neues radioaktives Element, das er wegen seiner starken Bildung von Emanation Emanium nannte und mit dem jetzt als Actinium bezeichneten Element identisch ist.1899 fand André-Louis Debierne in Pechblende eine dem Titan chemisch ähnliche radioaktive Substanz, der er 1900 eine größere Ähnlichkeit mit dem Thorium zuschrieb. Wegen seiner hohen Radioaktivität erklärte er sie für ein neues Element und nannte es Actinium. Es bestand hauptsächlich aus 230Th. 1904 erklärte er, dass sein Actinium mit dem von Giesel entdeckten dem Lanthan ähnlichen Emanium identisch sei. Er übernahm Giesels Entdeckung und verwarf seine eigene, weil er fürchtete, dass seine entdeckte Substanz, die er nicht vom Thorium trennen konnte, nicht als neues chemisches Element anerkannt werden würde. Als Bertran Boltwood1909 nach den langlebigen Vorgängerelement von Radium suchte, trennte er nach der Vorschrift von Debierne die Thoriumfraktion aus der Pechblende ab und stellte fest, dass sich daraus mit der Zeit Radium gebildet hatte, wogegen sich aus dem nach der Vorschrift von Giesel abgetrennten Emanium kein Radium gebildet hatte. Boltwod nannte das Vorgängerelement von Radium Ionium, das zuerst als neues radioaktives Element anerkannt und entspäter als Thoriumisotop 230Th identifiziert wurde. Trotzdem Debierne nicht Actinium sondern diese Substanz entdeckt und später verworfen hatte, war er lange Zeit als Entdecker des Actiniums anerkannt.
Niese, Siegfried. „Die Entdeckung des Actiniums“. Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-152864.
Der volle Inhalt der QuelleFriedrich Giesel discovered actinium in 1902 after co precipitation with lanthanum from a solution of pitchblende. He had suggested to name it emanium, because of its emanating properties. But for a long time only Andre-Louis Debierne was accepted as discoverer of actinium, because in 1904 he has explained, that the radioactive substance found by him in 1900, with chemical properties of thorium, named actinium, and mainly consisting of the thorium isotope 230Th, has been identical with the emanium of Giesel. The discoveries of Giesel and Debierne are explained as well as the steps on the way of acceptance of Giesel as discoverer of actinium
Geibert, Walter. „Actinium-227 als Tracer für Advektion und Mischung in der Tiefsee = Actinium-227 as a tracer for advection and mixing in the deep-sea /“. Bremerhaven : Alfred-Wegener-Institut für Polar- und Meeresforschung, 2001. http://www.awi-bremerhaven.de/GEO/Publ/PhDs/WGeibert.
Der volle Inhalt der QuelleNiese, Siegfried. „Die Entdeckung des Actiniums“. Gesellschaft Deutscher Chemiker, 2013. https://slub.qucosa.de/id/qucosa%3A4674.
Der volle Inhalt der QuelleFriedrich Giesel discovered actinium in 1902 after co precipitation with lanthanum from a solution of pitchblende. He had suggested to name it emanium, because of its emanating properties. But for a long time only Andre-Louis Debierne was accepted as discoverer of actinium, because in 1904 he has explained, that the radioactive substance found by him in 1900, with chemical properties of thorium, named actinium, and mainly consisting of the thorium isotope 230Th, has been identical with the emanium of Giesel. The discoveries of Giesel and Debierne are explained as well as the steps on the way of acceptance of Giesel as discoverer of actinium.
Bray, Travis Henry Albrecht-Schmitt Thomas E. „Crossroads and terminations in transuranium chemistry“. Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SUMMER/Chemistry_and_Biochemistry/Dissertation/Bray_Travis_43.pdf.
Der volle Inhalt der QuelleAbstract. Vita. Parts of this dissertation have been published as: Na₂[UO₂(IO₃)₄(H₂O)] (Ch. 2: Bray, T.H.; et al., Inorg. Chem., 2006, 45, 8251-8257.), An(IO₃)₄(An = Np, Pu) and Np(IO₃)₄·nH2O (Ch. 3: Bray, T.H.; et al., Inorg. Chem., 2007, 46, 3663-3668.), Pu(SeO₃)₂ (Ch. 4: Bray, T.H.; et al., J. Solid State Chem., 2008, 181, 493-498.), NpFPO₄ and Cs₂Np₂F₇PO₄ (Ch. 5: Bray, T.H.; et al., J. Solid State Chem., 2007, 180, 70-74.), [C₆H₁₄N₂][(UO₂)₄(HPO₄)₂PO₄)₂(H₂O)]·H₂O (Ch. 6: Bray, T.H.; et al., "Synthesis and Structure of [C6H14N2][(UO2)4(HPO4)2(PO4)2(H2O)]·H₂O: An Expanded Open-Framework Amine-Bearing Uranyl Phosphate," In press: Journal of Solid State Chemistry April 24, 2008.), and Np(CH₃PO₃)(CH₃PO₃H)(NO₃)(H₂O)·H₂O (Ch. 7: Bray, T.H.; et al., Inorg. Chem., 2007, 46, 10959-10961.). Includes bibliographical references.
VanSant, Paul Daniel. „Medical Isotope Production of Actinium 225 By Linear Accelerator Photon Irradiation of Radium 226“. Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/50984.
Der volle Inhalt der Quelle(half-life 46 min) to kill cancerous cells on a localized basis. Maximum energy is delivered to the cancer cells thereby greatly minimizing healthy tissue damage.
This research proposes a production method using a high-energy photon spectrum (generated by a linear accelerator or LINAC) to irradiate a sample of Radium-226 (half-life 1600yrs). The photo-neutron reaction liberates neutrons from Ra-226 atoms leaving behind Radium-225 (half-life 14.7 days). Ra-225 decays naturally through beta emission to Ac-225. Previous research demonstrated it is possible to produce Ac-225 using a LINAC; however, very low yields resulted which questioned the feasibility of this production method. This research proposes a number of LINAC and radium sample modifications that could be greatly increase yield amounts for practical use.
Additionally, photo-neutron cross-section data for Ra-226 was used, which led to improved yield calculations for Ra-225. A MATLAB® model was also created, which enables users to perform quick yield estimates given several key model parameter inputs. Obtaining a sufficient supply of radium material is also of critical importance to this research. Therefore information was gathered regarding availability and inventory of Radium-226. This production method would serve as a way to not only eliminate many hazardous radium sources destined for interim storage, but provide a substantial supply of Ac-225 for future cancer treatment.
Master of Science
Melville, Graeme P. „Production of AC-225 for cancer therapy by photon induced transmutation of RA-226“. Thesis, View thesis, 2007. http://handle.uws.edu.au:8081/1959.7/18860.
Der volle Inhalt der QuelleMoulin, Jeanne. „Comportement des radionucléides des familles de l'uranium dans les eaux superficielles du site de la Crouzille, Limousin : implications géochimiques“. Châtenay-Malabry, Ecole centrale de Paris, 2008. http://www.theses.fr/2008ECAP1099.
Der volle Inhalt der QuelleUnderstanding natural radionuclides behaviour in surface water is a required step to achieve uranium mine rehabilitation and preserve water quality. The first objective of this thesis is to determine which are the radionuclides sources in a drinking water reservoir. The second objective is to improve the knowledge about the behaviour of uranium series radionuclides, especially actinium. The investigated site is a brook (Sagnes, Limousin, France) which floods a peat bog contaminated by a former uranium mine and which empties into the Crouzille lake. It allows studying radionuclides transport in surface water and radionuclides retention through organic substance or water reservoir. Radionuclides distribution in particulate, colloidal and dissolved phases is determined thanks to ultrafiltrations. Gamma spectrometry allows measuring almost all natural radionuclides with only two counting stages. However, low activities of 235U serie radionuclides impose the use of very low background well-type Ge detectors, such as those of the Underground Laboratory of Modane (France). Firstly, this study shows that no or few radionuclides are released by the Sagnes peat bog, although its radioactivity is important. Secondly, it provides details on the behaviour of uranium series radionuclides in surface water. More specifically, it provides the first indications of actinium solubility in surface water. Actinium’s behaviour is very close to uranium’s even if it is a little less soluble
Levier, Martin. „Développement et utilisation de l'Actinium-227 comme traceur du mélange de l'océan profond“. Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASJ006.
Der volle Inhalt der QuelleThe vertical mixing in the deep ocean is an important process for the functioning of thermohaline circulation and also for the global climatic system. L'actinium-227 (227Ac) is a natural radioactive isotope product by the protactinium-231 (231Pa) decay in deep marine sediment. The short half-life of this isotope (22 years) makes it a specific tracer of vertical mixing of deep ocean. 227Ac analysis by nuclear counting used until now required from 50 to several hundred liters of water for a limited accuracy. This limited strongly the use of 227Ac in oceanography until today. During this thesis, we developed a join 231Pa-227Ac purification protocol suitable for 10L seawater sample, to perform analysis by MC-ICPMS. In addition to these two isotopes, this separation protocol provides different fractions that can be used to other tracers (Nd, Ra or Th isotopes) from the same water sample.This protocol was applied to archival samples collected during the Bonus GoodHope cruise, in the Southern Ocean. 231Pa was measured at the same time as 227Ac because its analysis is essential to exploit 227Ac data. These new 231Pa data support the previous hypothesis of a strong affinity toward the opal produced by the diatoms and allow to refine the transport of radionuclides along slopping isopycnal surfaces at the South of the ACC. Results from 227Ac data gave estimates of the vertical eddy diffusion coefficient of 1 cm2/s over the mid-ocean ridge, of 14 cm2/s near the African margin due to an enhanced turbulence and of the order of 30 cm2/s in the Weddell gyre. An application of these values is proposed to describe the concentration and isotopic signature distributions of Nd near the continental margin
Bücher zum Thema "Actinium"
1949-, Meyer G., und Morss Lester R, Hrsg. Synthesis of lanthanide and actinide compounds. Dordrecht: Kluwer Academic, 1991.
Den vollen Inhalt der Quelle findenTopical, Conference on Plutonium and Actinides (6th 2010 Keystone Colo ). Plutonium futures-- the science 2010: [Topical Conference on Plutonium and Actinides] , Keystone, Colorado, September 19-23, 2010. LaGrange Park, Ill: American Nuclear Society, 2010.
Den vollen Inhalt der Quelle findenAgency, International Atomic Energy, Hrsg. Decay data of the transactinium nuclides. Vienna: International Atomic Energy Agency, 1986.
Den vollen Inhalt der Quelle findenZuev, V. A. Geksaftoridy aktinoidov. Moskva: Ėnergoatomizdat, 1991.
Den vollen Inhalt der Quelle findenJ, Marks Tobin, Fragalà Ignazio L. 1943- und North Atlantic Treaty Organization. Scientific Affairs Division., Hrsg. Fundamental and technological aspects of organo-f-element chemistry. Dordrecht: D. Reidel Pub. Co., 1985.
Den vollen Inhalt der Quelle findenGeibert, Walter. Actinium-227 als Tracer für Advektion und Mischung in der Tiefsee =: Actinium-227 as a tracer for advection and mixing in the deep-sea. Bremerhaven: Alfred-Wegener-Institut für Polar- und Meeresforschung, 2001.
Den vollen Inhalt der Quelle finden1927-, Kasuya T., Hrsg. Physical properties of actinide and rare earth compounds: Search for heavy fermion characters. Tokyo, Japan: Publication Office, Japanese Journal of Applied Physics, 1993.
Den vollen Inhalt der Quelle findenWijn, H. P. J., Hrsg. Actinide Monochalcogenides. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-47043-4.
Der volle Inhalt der QuelleHealey, David. Actinic light. Sutton Coldfield, West Midlands, United Kingdom: The Blackford Press, 2012.
Den vollen Inhalt der Quelle findenKalmykov, Stepan N., und Melissa A. Denecke, Hrsg. Actinide Nanoparticle Research. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11432-8.
Der volle Inhalt der QuelleBuchteile zum Thema "Actinium"
Kirby, H. W. „Actinium“. In The Chemistry of the Actinide Elements, 14–40. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4077-2_2.
Der volle Inhalt der QuelleKirby, H. W., und Lester R. Morss. „Actinium“. In The Chemistry of the Actinide and Transactinide Elements, 18–51. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-94-007-0211-0_2.
Der volle Inhalt der QuelleTurova, Nataliya. „Scandium, Actinium“. In Inorganic Chemistry in Tables, 77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20487-6_26.
Der volle Inhalt der QuellePredel, B. „Ac-Ag (Actinium - Silver)“. In Ac-Ag ... Au-Zr, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/10793176_3.
Der volle Inhalt der QuellePredel, B. „Ac-Au (Actinium - Gold)“. In Ac-Ag ... Au-Zr, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/10793176_4.
Der volle Inhalt der QuellePredel, B. „Ac-B (Actinium - Boron)“. In Ac-Ag ... Au-Zr, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/10793176_5.
Der volle Inhalt der QuellePredel, B. „Ac-Cr (Actinium - Chromium)“. In Ac-Ag ... Au-Zr, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/10793176_6.
Der volle Inhalt der QuellePredel, B. „Ac-Cu (Actinium - Copper)“. In Ac-Ag ... Au-Zr, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/10793176_7.
Der volle Inhalt der QuellePredel, B. „Ac-H (Actinium - Hydrogen)“. In Ac-Ag ... Au-Zr, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/10793176_8.
Der volle Inhalt der QuellePredel, B. „Ac-Hg (Actinium - Mercury)“. In Ac-Ag ... Au-Zr, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/10793176_9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Actinium"
Reissig, F., K. Zarschler, Z. Novy, M. Petrik, H. J. Pietzsch, K. Kopka und C. Mamat. „Entwicklung alternativer Verbindungen für die PSMA-Therapie mit Actinium-225“. In 61. Jahrestagung der Deutschen Gesellschaft für Nuklearmedizin. Georg Thieme Verlag, 2023. http://dx.doi.org/10.1055/s-0043-1766331.
Der volle Inhalt der QuelleRosenbusch, M., Y. Ito, P. Schury, M. Wada, S. Ishizawa, S. Kimura, H. Miyatake, T. Niwase und H. Wollnik. „Multiple-fit Analysis of Neutron-Deficient Radium and Actinium Isotopes“. In Proceedings of 10th International Conference on Nuclear Physics at Storage Rings (STORI’17). Journal of the Physical Society of Japan, 2021. http://dx.doi.org/10.7566/jpscp.35.011004.
Der volle Inhalt der QuelleKovatsch, Matthias, Martin Lanter und Simon Duquennoy. „Actinium: A RESTful runtime container for scriptable Internet of Things applications“. In 2012 3rd International Conference on the Internet of Things (IOT). IEEE, 2012. http://dx.doi.org/10.1109/iot.2012.6402315.
Der volle Inhalt der QuelleFeuerecker, B., A. Gafita, R. Tauber, CD Alessandria, C. Seidl, F. Bruchertseifer, M. Retz, W. Weber, A. Morgenstern und M. Eiber. „Effekte eines Zyklus Actinium-225-PSMA-617 (AcPSMA) auf die Speicheldrüsen-vorläufige Ergebnisse“. In NuklearMedizin 2020. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1708336.
Der volle Inhalt der QuelleZhu, Z., D. Luo, B. Wollenberg, B. Feuerecker, M. Eiber und A. Pickhard. „Treatment of PSMA-255-Actinium therapy induced xerostomia in patients with prostate cancer“. In Abstract- und Posterband – 91. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Welche Qualität macht den Unterschied. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1710928.
Der volle Inhalt der QuelleHARVEY, JAMES, JERRY A. NOLEN, THOMAS KROC, ITACIL GOMES, E. PHILIP HORWITZ und DANIEL R. MCALISTER. „PRODUCTION OF ACTINIUM-225 VIA HIGH ENERGY PROTON INDUCED SPALLATION OF THORIUM-232“. In Proceedings of the Workshop. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814317290_0044.
Der volle Inhalt der QuelleBergmann, R., C. Arndt, D. Máthé, N. Berndt, LR Loureiro, N. Kovács, D. Szöllösi et al. „Copper-64/Actinium-225-human anti-PSCA-IgG4 theranostics of a prostate cancer model“. In NuklearMedizin 2021 – digital. Georg Thieme Verlag KG, 2021. http://dx.doi.org/10.1055/s-0041-1726705.
Der volle Inhalt der QuelleMirsaidov, U., Kh M. Nazarov, B. D. Boboev und E. Yu Malysheva. „RADIATION SITUATION ON THE TERRITORY OF THE NORTHERN SLOPES OF THE TURKESTAN RIDGE“. In SAKHAROV READINGS 2022: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2022. http://dx.doi.org/10.46646/sakh-2022-2-261-265.
Der volle Inhalt der QuelleRattyananda, Badra Sanditya, Duyeh Setiawan, Muhamad Basit Febrian, Rasito Tursinah, Rudi Gunawan, Teguh Hafiz Ambar Wibawa, Yanuar Setiadi, Isa Mahendra und Ahmad Kurniawan. „Preliminary study of radioisotopes Actinium-225 (225Ac) production using Indonesian DECY-13 cyclotron conceptual design“. In INTERNATIONAL CONFERENCE ON NUCLEAR SCIENCE, TECHNOLOGY, AND APPLICATIONS – ICONSTA 2022. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0193405.
Der volle Inhalt der QuelleWaldek, Achim. „RIMS measurements for the determination of the first ionization potential of the actinides actinium up to einsteinium“. In RESONANCE IONIZATION SPECTROSCOPY 2000: Laser Ionization and Applications Incorporating RIS; 10th International Symposium. AIP, 2001. http://dx.doi.org/10.1063/1.1405607.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Actinium"
Brown, M. Developing Inorganic Resins for Radium and Actinium Generators and Purifications. Office of Scientific and Technical Information (OSTI), Dezember 2022. http://dx.doi.org/10.2172/1908454.
Der volle Inhalt der QuelleHaring, M. M. Report for General Research April 1 to July 26, 1950 (Actinium Volume). Office of Scientific and Technical Information (OSTI), Juli 2009. http://dx.doi.org/10.2172/958402.
Der volle Inhalt der QuelleHarvey, James T., Jerry Nolen, George Vandergrift, Itacil Gomes, Tom Kroc, Phil Horwitz, Dan McAlister, Del Bowers, Vivian Sullivan und John Greene. Production of Actinium-225 via High Energy Proton Induced Spallation of Thorium-232. Office of Scientific and Technical Information (OSTI), Dezember 2011. http://dx.doi.org/10.2172/1032445.
Der volle Inhalt der QuelleNoguere, Gilles, Oscar Cabellos, Denise Neudecker, Andrej Trkov und Roberto Capote Noy. Summary Report of the IAEA Consultants’ Meeting of the International Nuclear Data Evaluation Network (INDEN) on Actinide Evaluation in the Resonance Region (4). IAEA Nuclear Data Section, September 2022. http://dx.doi.org/10.61092/iaea.kw6h-tcge.
Der volle Inhalt der QuelleMigliori, Albert. Actinide Research Quarterly. Office of Scientific and Technical Information (OSTI), Juni 2015. http://dx.doi.org/10.2172/1188164.
Der volle Inhalt der QuelleStoyer, Nancy Jane. Actinide cation-cation complexes. Office of Scientific and Technical Information (OSTI), Dezember 1994. http://dx.doi.org/10.2172/34204.
Der volle Inhalt der QuelleChoppin, G. R. Research in actinide chemistry. Office of Scientific and Technical Information (OSTI), Januar 1993. http://dx.doi.org/10.2172/6735291.
Der volle Inhalt der QuelleKoenig, Z. M., W. D. Ruhter und R. Gunnink. Actinide isotopic analysis systems. Office of Scientific and Technical Information (OSTI), Oktober 1990. http://dx.doi.org/10.2172/6447881.
Der volle Inhalt der QuelleBrowne, Kevin Patrick. Actinide High-Nitrogen Chemistry. Office of Scientific and Technical Information (OSTI), Mai 2015. http://dx.doi.org/10.2172/1179259.
Der volle Inhalt der QuelleShehee, T. C. 2013 Actinide Separation conference Presentations on Minor Actinide Separations by SRNL Participants (Shehee). Office of Scientific and Technical Information (OSTI), Juni 2013. http://dx.doi.org/10.2172/1553555.
Der volle Inhalt der Quelle