Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Acoustical vortices“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Acoustical vortices" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Acoustical vortices"
Baudoin, M., und J. L. Thomas. „Acoustic Tweezers for Particle and Fluid Micromanipulation“. Annual Review of Fluid Mechanics 52, Nr. 1 (05.01.2020): 205–34. http://dx.doi.org/10.1146/annurev-fluid-010719-060154.
Der volle Inhalt der QuelleGao, Lu, Haixiang Zheng, Qingyu Ma, Juan Tu und Dong Zhang. „Linear phase distribution of acoustical vortices“. Journal of Applied Physics 116, Nr. 2 (14.07.2014): 024905. http://dx.doi.org/10.1063/1.4889860.
Der volle Inhalt der QuelleBaudoin, Michael, Jean-Claude Gerbedoen, Antoine Riaud, Olivier Bou Matar, Nikolay Smagin und Jean-Louis Thomas. „Folding a focalized acoustical vortex on a flat holographic transducer: Miniaturized selective acoustical tweezers“. Science Advances 5, Nr. 4 (April 2019): eaav1967. http://dx.doi.org/10.1126/sciadv.aav1967.
Der volle Inhalt der QuelleTay, Daniel, und Ning Xiang. „Experimental study of instantaneous sound intensities in rectangular enclosures“. Journal of the Acoustical Society of America 153, Nr. 3_supplement (01.03.2023): A23. http://dx.doi.org/10.1121/10.0018019.
Der volle Inhalt der QuelleYang, Ling, Qingyu Ma, Juan Tu und Dong Zhang. „Phase-coded approach for controllable generation of acoustical vortices“. Journal of Applied Physics 113, Nr. 15 (21.04.2013): 154904. http://dx.doi.org/10.1063/1.4801894.
Der volle Inhalt der QuelleZheng, Haixiang, Lu Gao, Qingyu Ma, Yafei Dai und Dong Zhang. „Pressure distribution based optimization of phase-coded acoustical vortices“. Journal of Applied Physics 115, Nr. 8 (28.02.2014): 084909. http://dx.doi.org/10.1063/1.4867046.
Der volle Inhalt der QuelleGong, Zhixiong, und Michael Baudoin. „Three-dimensional trapping and assembly with synchronized spherical acoustical vortices“. Journal of the Acoustical Society of America 148, Nr. 4 (Oktober 2020): 2784. http://dx.doi.org/10.1121/1.5147746.
Der volle Inhalt der QuelleBrunet, Thomas, Jean-Louis Thomas, Régis Marchiano und François Coulouvrat. „Experimental investigation of 3D shock waves on nonlinear acoustical vortices“. Physics Procedia 3, Nr. 1 (Januar 2010): 905–11. http://dx.doi.org/10.1016/j.phpro.2010.01.116.
Der volle Inhalt der QuelleBrunet, Thomas, Jean-Louis Thomas, Régis Marchiano und François Coulouvrat. „Experimental observation of azimuthal shock waves on nonlinear acoustical vortices“. New Journal of Physics 11, Nr. 1 (07.01.2009): 013002. http://dx.doi.org/10.1088/1367-2630/11/1/013002.
Der volle Inhalt der QuelleVolke-Sepúlveda, K., A. O. Santillán und R. R. Boullosa. „Transfer of Angular Momentum to Matter from Acoustical Vortices in Free Space“. Topologica 2, Nr. 1 (2009): 016. http://dx.doi.org/10.3731/topologica.2.016.
Der volle Inhalt der QuelleDissertationen zum Thema "Acoustical vortices"
Almohamad, Samir. „Micro-manipulation de fluides miscibles et de fibres de collagène à l'aide de pinces acoustiques à faisceau unique“. Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILN038.
Der volle Inhalt der QuelleUltrasound techniques have proven to be powerful tools for controlling dispersed immiscible droplets. By carefully shaping the acoustic field, these droplets can be sorted, divided, merged, selectively targeted, and repositioned with precision. Common methods include using standing waves to capture droplets at specific pressure nodes or antinodes, as well as employing traveling waves to move droplets along the path of wave propagation. Recent breakthroughs have led to the development of selective acoustic tweezers, which utilize focused beams or acoustic vortices for the precise manipulation of individual droplets. However, ultrasound-based manipulation has traditionally focused on immiscible fluids. Karlsen, Augustsson, and Bruus [Phys. Rev. Lett. 117, 114504 2016] suggested the possibility of manipulating miscible fluids with selective tweezers. However, their work was purely theoretical and no experimental demonstrations have been achieved so far. Such a demonstration is very challenging because of the weak acoustic contrast between miscible fluids and the diffusion process, progressively blurring the interface.This Ph.D. research experimentally demonstrates the possibility of patterning, trapping, and dislocating high-concentration miscible-fluid blobs (Ficoll) within a lower-concentration medium (water) using selective acoustic tweezers. It delves into the complex interactions between ultrasound waves and miscible fluids, with a particular focus on nonlinear acoustic effects such as acoustic radiation force and acoustic streaming and their influence on fluid behavior at microscales. The experimental setup integrates single-beam acoustical tweezers with microfluidic devices, allowing precise control and manipulation of fluids. The experimental results are compared with numerical simulations, resulting in good agreement between the two.We further explored the manipulation of other objects with low acoustic contrast: collagen fibers. Our preliminary results suggest the possibility of manipulating these fibers within a fluid medium. This noninvasive method has potential implications in tissue engineering and biomedical research
Li, Wenhua. „Flow/acoustics mechanisms in two- and three-dimensional wake vortices“. Diss., Manhattan, Kan. : Kansas State University, 2007. http://hdl.handle.net/2097/400.
Der volle Inhalt der QuelleLegendre, César. „On the interactions of sound waves and vortices“. Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209147.
Der volle Inhalt der Quellereflection and refraction effects. This work focusses on the effects of mean flow
vorticity on the acoustic propagation. First, a theoretical background is presented
in chapters 2-5. This part contains: (i) the fluid dynamics and thermodynamics
relations; (ii) theories of sound generation by turbulent flows; and (iii) operators taken
from scientific literature to take into account the vorticity effects on acoustics. Later,
a family of scalar operators based on total enthalpy terms are derived to handle mean
vorticity effects of arbitrary flows in acoustics (chapter 6). Furthermore, analytical
solutions of Pridmore-Brown’s equation are featured considering exponential boundary
layers whose profile depend on the acoustic parameters of the problem (chapter 7).
Finally, an extension of Pridmore-Brown’s equation is formulated for predicting the
acoustic propagation over a locally-reacting liner in presence of a boundary layer of
linear velocity profile superimposed to a constant cross flow (chapter 8).
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Berglund, Albin. „Evolution of Cavity Tip Vortices in High-Pressure Turbines“. Thesis, Uppsala universitet, Elektricitetslära, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-329369.
Der volle Inhalt der QuelleMEN'SHOV, Igor, und Yoshiaki NAKAMURA. „On Instability of Acoustic Waves Propagating in Stratified Vortical Flows“. The Japan Society of Mechanical Engineers, 2002. http://hdl.handle.net/2237/9091.
Der volle Inhalt der QuelleDavis, James Arthur. „Acoustic-vortical-combustion interaction in a solid fuel ramjet simulator“. Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/12947.
Der volle Inhalt der QuelleDurand, Christopher. „Validation of a CAA Code for a Case of Vortical Gust-Stator Interaction“. University of Toledo / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1481203960382465.
Der volle Inhalt der QuelleShahriari, Nima. „On stability and receptivity of boundary-layer flows“. Doctoral thesis, KTH, Stabilitet, Transition, Kontroll, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-196878.
Der volle Inhalt der QuelleQC 20161124
Brynjell-Rahkola, Mattias. „Studies on instability and optimal forcing of incompressible flows“. Doctoral thesis, KTH, Stabilitet, Transition, Kontroll, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-218172.
Der volle Inhalt der QuelleQC 20171124
da, Cunha Daise Nunes Queiroz. „Properties of Flow Through the Ascending Aorta in Boxer Dogs with Mild Aortic Stenosis: Momentum, Energy, Reynolds Number, Womersley’s, Unsteadiness Parameter, Vortex Shedding, and Transfer Function of Oscillations from Aorta to Thoracic Wall“. The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1243910694.
Der volle Inhalt der QuelleBücher zum Thema "Acoustical vortices"
Jackson, Thomas L. Role of acoustics in flame/vortex interactions. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1993.
Den vollen Inhalt der Quelle findenHoad, Danny R. Helicopter blade-vortex interaction locations - scale-model acoustics and free-wake analysis results. Hampton, Va: Langley Research Center, 1987.
Den vollen Inhalt der Quelle findenKrause, E. IUTAM Symposium on Dynamics of Slender Vortices: Proceedings of the IUTAM Symposium held in Aachen, Germany, 31 August - 3 September 1997. Dordrecht: Springer Netherlands, 1998.
Den vollen Inhalt der Quelle findenRaman, Ganesh. Enhanced mixing of an axisymmetric jet by aerodynamic excitation. Cleveland, Ohio: Lewis Research Center, 1986.
Den vollen Inhalt der Quelle findenRaman, Ganesh. Enhanced mixing of an axisymmetric jet by aerodynamic excitation. Cleveland, Ohio: Lewis Research Center, 1986.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Acoustical vortices"
Tsuji, Kinko. „Acoustic Spirals: Analysis of Bach’s Prelude in C Major“. In Spirals and Vortices, 113–25. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05798-5_5.
Der volle Inhalt der QuelleTsuji, Kinko. „Correction to: Acoustic Spirals: Analysis of Bach’s Prelude in C Major“. In Spirals and Vortices, C1. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-05798-5_17.
Der volle Inhalt der QuelleInoue, O., und Y. Hattori. „Acoustic Sound Generated by Collision of Two Vortex Rings“. In IUTAM Symposium on Dynamics of Slender Vortices, 361–68. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5042-2_30.
Der volle Inhalt der QuelleBaffico, Maurizio, Denis Boyer und Fernando Lund. „Multiple Scattering of Acoustic Waves by Many Slender Vortices“. In IUTAM Symposium on Dynamics of Slender Vortices, 379–87. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5042-2_32.
Der volle Inhalt der QuelleShchurov, Vladimir A. „Vortices of Acoustic Intensity Vector in the Shallow Water Waveguide“. In Movement of Acoustic Energy in the Ocean, 77–118. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1300-6_4.
Der volle Inhalt der QuelleMakita, H., und T. Hasegawa. „Acoustic Control of Vortical Structure in a Plane Jet“. In Eddy Structure Identification in Free Turbulent Shear Flows, 77–88. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2098-2_8.
Der volle Inhalt der QuelleKerschen, E. J. „Receptivity of Boundary Layers to Acoustic and Vortical Free-Stream Disturbances“. In Advances in Soil Science, 239–49. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3430-2_30.
Der volle Inhalt der QuelleKerschen, E. J., M. Choudhari und R. A. Heinrich. „Generation of Boundary Layer Instability Waves by Acoustic and Vortical Free-Stream Disturbances“. In Laminar-Turbulent Transition, 477–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84103-3_43.
Der volle Inhalt der QuelleYoshikawa, Shigeru. „Vortices on Sound Generation and Dissipation in Musical Flue Instruments“. In Vortex Dynamics Theories and Applications. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.91258.
Der volle Inhalt der QuelleRout, Siddharth. „Early Advancements in Turbulence-Generated Noise Modelling: A Review“. In Boundary Layer Flows - Advances in Modelling and Simulation [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.1002433.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Acoustical vortices"
Haixiang Zheng, Yuzhi Li, Qingyu Ma und Dong Zhang. „Controllable generation of acoustical vortices with sparse sources“. In 2015 IEEE International Ultrasonics Symposium (IUS). IEEE, 2015. http://dx.doi.org/10.1109/ultsym.2015.0448.
Der volle Inhalt der QuelleMarchiano, Régis, Jean-Louis Thomas, Bengt Enflo, Claes M. Hedberg und Leif Kari. „Effects of the parametric interaction on the toplogical charge of acoustical vortices.“ In NONLINEAR ACOUSTICS - FUNDAMENTALS AND APPLICATIONS: 18th International Symposium on Nonlinear Acoustics - ISNA 18. AIP, 2008. http://dx.doi.org/10.1063/1.2956165.
Der volle Inhalt der QuelleMarchiano, R. „Theoretical and experimental study of the topological charge of linear and nonlinear acoustical vortices“. In INNOVATIONS IN NONLINEAR ACOUSTICS: ISNA17 - 17th International Symposium on Nonlinear Acoustics including the International Sonic Boom Forum. AIP, 2006. http://dx.doi.org/10.1063/1.2210391.
Der volle Inhalt der QuelleYamade, Yoshinobu, Chisachi Kato, Akiyoshi Iida, Shinobu Yoshimura und Keiichiro Iida. „Prediction of Pressure Fluctuation on a Vehicle by Large Eddy Simulation“. In ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-17519.
Der volle Inhalt der QuelleLi, Guoqiang, und Ephraim J. Gutmark. „Geometry Effects on the Flow Field and the Spectral Characteristics of a Triple Annular Swirler“. In ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/gt2003-38799.
Der volle Inhalt der QuelleKannan, Ashwin, und S. R. Chakravarthy. „A Framework to Predict Combustion Noise and Instability: Case Study of a Partially Premixed Flame in a Backward-Facing Step Combustor“. In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-65211.
Der volle Inhalt der QuelleHarper, Chris, Chris Bibby, Nathan Hartford, Chase Harris und Cristian Popa. „Flow-Induced Vibration Assessment and Mitigation for Compressor Station Expansion“. In 2024 15th International Pipeline Conference. American Society of Mechanical Engineers, 2024. https://doi.org/10.1115/ipc2024-133362.
Der volle Inhalt der QuelleCHAWLA, KALPANA, und CHUEN-YEN CHOW. „Acoustic control of vortices“. In 12th Aeroacoustic Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1042.
Der volle Inhalt der QuelleNaugolnykh, Konstantin. „Acoustic instability of vortices“. In ICA 2013 Montreal. ASA, 2013. http://dx.doi.org/10.1121/1.4800704.
Der volle Inhalt der QuelleLi, Wenhua, Z. C. Zheng und Ying Xu. „Flow/Acoustic Mechanisms in Three-Dimensional Vortices Undergoing Sinusoidal-Wave Instabilities“. In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43163.
Der volle Inhalt der Quelle