Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Acoustical engineering“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Acoustical engineering" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Acoustical engineering"
Burkhard, Mahlon D. „Acoustical standards in engineering acoustics“. Journal of the Acoustical Society of America 115, Nr. 5 (Mai 2004): 2434. http://dx.doi.org/10.1121/1.4781590.
Der volle Inhalt der QuelleHaberman, Michael R. „Introduction to the Technical Committee on Engineering Acoustics“. Journal of the Acoustical Society of America 155, Nr. 3_Supplement (01.03.2024): A29. http://dx.doi.org/10.1121/10.0026675.
Der volle Inhalt der QuelleMolevich, Nonna E., Anatoly I. Klimov und Vladimir G. Makaryan. „Influence of Thermodynamic Nonequilibrium on the Acoustic Properties of Gases“. International Journal of Aeroacoustics 4, Nr. 3 (Juli 2005): 373–83. http://dx.doi.org/10.1260/1475472054771411.
Der volle Inhalt der QuelleVan Uffelen, Lora, James H. Miller und Gopu R. Potty. „Underwater acoustics and ocean engineering at the University of Rhode Island“. Journal of the Acoustical Society of America 152, Nr. 4 (Oktober 2022): A124. http://dx.doi.org/10.1121/10.0015761.
Der volle Inhalt der QuelleBrown, David A., Paul J. Gendron und John R. Buck. „Graduate education in acoustic engineering, transduction, and signal processing University of Massachusetts Dartmouth“. Journal of the Acoustical Society of America 152, Nr. 4 (Oktober 2022): A123. http://dx.doi.org/10.1121/10.0015756.
Der volle Inhalt der QuelleFonseca, William D'Andrea, Eric Brandão, Paulo H. Mareze, Viviane S. G. Melo, Roberto A. Tenenbaum, Christian dos Santos und Dinara Paixão. „Acoustical engineering: A complete academic undergraduate program in Brazil“. Journal of the Acoustical Society of America 152, Nr. 2 (August 2022): 1180–91. http://dx.doi.org/10.1121/10.0013570.
Der volle Inhalt der QuelleHioka, Yusuke, Michael Kingan und George Dodd. „Learning effect of active learning coursework in engineering acoustics course“. INTER-NOISE and NOISE-CON Congress and Conference Proceedings 263, Nr. 2 (01.08.2021): 4154–65. http://dx.doi.org/10.3397/in-2021-2617.
Der volle Inhalt der QuelleBoot, Tim, Frederic Roskam, Phil Coleman, Simon Brown und Julien Laval. „Greater artistic and technological performance through the converged technologies of architectural acoustics, electroacoustic enhancement, and immersive audio technologies“. Journal of the Acoustical Society of America 154, Nr. 4_supplement (01.10.2023): A168. http://dx.doi.org/10.1121/10.0023155.
Der volle Inhalt der QuelleHiremath, Nandeesh, Vaibhav Kumar, Nicholas Motahari und Dhwanil Shukla. „An Overview of Acoustic Impedance Measurement Techniques and Future Prospects“. Metrology 1, Nr. 1 (11.05.2021): 17–38. http://dx.doi.org/10.3390/metrology1010002.
Der volle Inhalt der QuelleWang, Zhen Jiang, und Feng Hua Lu. „The Acoustical Design of Conference Room Based on Speech Acoustic“. Applied Mechanics and Materials 507 (Januar 2014): 127–30. http://dx.doi.org/10.4028/www.scientific.net/amm.507.127.
Der volle Inhalt der QuelleDissertationen zum Thema "Acoustical engineering"
Ozgenel, Caglar Firat. „Developing A Tool For Acoustical Performance Evaluation Throughout The Design“. Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614066/index.pdf.
Der volle Inhalt der QuelleTerry, Jonathan. „Acoustic modeling of an enclosed reverberant environment“. Diss., Online access via UMI:, 2007.
Den vollen Inhalt der Quelle findenIncludes bibliographical references.
Onur, Cagla. „Acoustic Tracking Of Ship Wakes“. Phd thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615656/index.pdf.
Der volle Inhalt der QuelleLévesque, Sylvain. „Acoustical imaging using wave propagation tomography“. Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/106041.
Der volle Inhalt der QuelleLin, Yiqiang Farouk Bakhtier. „Acoustic wave induced convection and transport in gases under normal and micro-gravity conditions /“. Philadelphia, Pa. : Drexel University, 2007. http://hdl.handle.net/1860/1795.
Der volle Inhalt der QuelleRinker, Brett A. „A single-sided access simultaneous solution of acoustic wave speed and sample thickness for isotropic materials of plate-type geometry“. Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4585.
Der volle Inhalt der QuelleThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on April 17, 2009) Vita. Includes bibliographical references.
Tan, Lin. „Development of micro-acoustic devices with applications of viscous effects“. Diss., Online access via UMI:, 2006.
Den vollen Inhalt der Quelle findenAbouchakra, Rabih. „Delay estimation for transform domain acoustical echo cancellation“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ37254.pdf.
Der volle Inhalt der QuelleZlobec, S. „Linear predictive spectral shaping for acoustical echo cancellation“. Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=23763.
Der volle Inhalt der QuelleIn speech-related applications, the covariance matrix of the reference signal is ten nearly singular, i.e., rank-deficient, which has the effect that some of the transform-domain tap coefficients stop adapting and effectively "freeze". During is low-rank phase, this frozen taps can retain any value without effect on the mean-square error (MSE), while the remaining taps track the evolution of the system and keep the MSE at a minimum.
When the covariance matrix becomes nonsingular, however, there are no longer any frozen coefficients, and a unique tap coefficient vector yields minimum MSE. The MSE abruptly "jumps", and convergence of the taps to the unique vector will take additional time due to the (obsolete) values of the previously frozen coefficients. To remedy the situation, one applies a method dubbed "spectral shaping".
The objective of spectral shaping is to replace, during the low-rank phase, each frozen coefficient by an estimate of the corresponding coefficient of the unique full-rank solution. This is achieved in the transform domain by a combination of forward and backward linear predictors. By using spectral shaping, the frozen coefficients are thus "prepared" to be unfrozen when the covariance matrix gains full rank, resulting in a reduced jump in the MSE.
Kondis, Antonios 1980. „Acoustical wave propagation in buried water filled pipes“. Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/30199.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 145-151).
This thesis presents a comprehensive way of dealing with the problem of acoustical wave propagation in cylindrically layered media with a specific application in water-filled underground pipes. The problem is studied in two stages: First the pipe is considered to be very stiff in relation to the contained fluid and then the stiffness of the pipe and the soil are taken into account. In both cases the solution process can take into account signals of any form, generated in any point inside the pipe. The simplified method provides the basic understanding on wave propagation and noise generation in the pipe in relation to pipe radius and frequency of excitation. Following the simplified analysis, the beam forming method is discussed and applied in order to reduce the noise in the pipe. Moving on to the complete analysis of the pipe, the stiffness matrix method is used to take into account the properties of the system. The solution time is proven to be much higher in this case, but the results vary from the simplified case in many real value problems. The results of the two methods are compared in more detail and then a decision making process for the choice of method is developed. This decision process is based on the frequency of the excitation, the properties of the materials and the dimensions of the system.
by Antonios Kondis.
S.M.
Bücher zum Thema "Acoustical engineering"
Olson, Harry Ferdinand. Acoustical engineering. Philadelphia, Pa. (P.O. Box 31718, Philadelphia 19147-7718): Professional Audio Journals, 1991.
Den vollen Inhalt der Quelle findenLee, Hua. Acoustical imaging. New York: Springer US, 1991.
Den vollen Inhalt der Quelle findenBean, Abigail. Engineering acoustics. Delhi: Global Media, 2009.
Den vollen Inhalt der Quelle findenTortoli, Piero. Acoustical Imaging. Boston, MA: Springer US, 1996.
Den vollen Inhalt der Quelle findenMechel, Fridolin. Room Acoustical Fields. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Den vollen Inhalt der Quelle findenJones, Joie Pierce. Acoustical Imaging. Boston, MA: Springer US, 1995.
Den vollen Inhalt der Quelle findenBenesty, Jacob. Advances in Network and Acoustic Echo Cancellation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001.
Den vollen Inhalt der Quelle findenJeannette, Martin, und Boston Museum of Science. Engineering is Elementary Team, Hrsg. Kwame's sound: An acoustical engineering story. Boston, MA: Boston Museum of Science, 2005.
Den vollen Inhalt der Quelle findenDracoulis, Georges. Acoustique architecturale & industrielle. Paris: PYC Editions, 1985.
Den vollen Inhalt der Quelle findenApfel, Robert E. Deaf architects & blind acousticians?: A guide to the principles of sound design. New Haven, CT: Apfel Enterprises, 1998.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Acoustical engineering"
Daijun, Ouyang, Liu Jiaqi, Huang Jinli, Wu Jianchen und Wei Mingguo. „Application of Seismic Tomography to the Hydroelectric Engineering Exploration“. In Acoustical Imaging, 669–76. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2958-3_91.
Der volle Inhalt der QuellePangraz, S., H. Simon, R. Herzer und W. Arnold. „Non-Destructive Evaluation of Engineering Ceramics by High-Frequency Acoustic Techniques“. In Acoustical Imaging, 189–95. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3692-5_20.
Der volle Inhalt der QuelleEargle, John. „Acoustical Fundamentals for the Recording Engineer“. In Handbook of Recording Engineering, 1–42. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-010-9366-8_1.
Der volle Inhalt der QuellePetrella, Orsola, Giovanni Cerasuolo, Salvatore Ameduri, Vincenzo Quaranta und Marco Laracca. „Calibration System for Multi-sensor Acoustical Systems“. In Lecture Notes in Electrical Engineering, 211–21. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04324-7_28.
Der volle Inhalt der QuelleAmeduri, S., O. Petrella, V. Quaranta, G. Betta und M. Laracca. „Multisensor Acoustical Systems: Calibration and Related Problems“. In Lecture Notes in Electrical Engineering, 67–70. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00684-0_13.
Der volle Inhalt der QuelleGinevsky, A. S., Ye V. Vlasov und R. K. Karavosov. „Supersonic Nonisobaric Turbulent Jets. Control of Aerodynamic and Acoustical Characteristics“. In Foundations of Engineering Mechanics, 173–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-39914-8_7.
Der volle Inhalt der QuelleLiu, Tao, Jiajia Liu, Zongmei Bai und Ouming Liu. „Acoustical Field Modeling for Communication Through Steel Based on FDTD“. In Lecture Notes in Electrical Engineering, 424–33. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8458-9_45.
Der volle Inhalt der QuelleTan, W. H., A. S. N. Amirah, S. Ragunathan, N. A. N. Zainab, A. M. Andrew, W. Faridah und E. A. Lim. „Acoustical Analysis and Optimization for Micro-Perforated Panel Sound Absorber“. In Lecture Notes in Mechanical Engineering, 587–98. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0866-7_50.
Der volle Inhalt der QuelleRienstra, S. W. „Acoustical detection of obstructions in a pipe with a temperature gradient“. In Topics in Engineering Mathematics, 151–79. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-1814-9_6.
Der volle Inhalt der QuelleKanade, Vijay A. „A Bio-acoustical Perceptual Sense* for Early Medical Diagnosis and Treatment“. In Innovations in Computer Science and Engineering, 519–25. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2043-3_56.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Acoustical engineering"
Bellizzi, Sergio, Bruno Cochelin, Philippe Herzog, Pierre-Olivier Matte´i und Ce´dric Pinhe`de. „Experimental Investigation of Low Frequency Noise Reduction Using a Nonlinear Vibroacoustic Absorber“. In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47431.
Der volle Inhalt der QuelleRETBI, M., und JD POLACK. „HOW ACOUSTICAL ENGINEERING COMPELS ARCHITECTS TO CREATIVITY“. In Auditorium Acoustics 2008. Institute of Acoustics, 2023. http://dx.doi.org/10.25144/17512.
Der volle Inhalt der QuelleCai, Liang-Wu, Dacio K. Dacol, Gregory J. Orris, David C. Calvo und Michael Nicholas. „Acoustical Scattering by Multilayer Spherical Objects Containing Electrorheological Fluid“. In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12508.
Der volle Inhalt der QuelleVaitkus, Audrius, Viktoras Vorobjovas, Donatas Čygas, Tadas Andriejauskas und Faustina Tuminienė. „Surface Type and Age Effects on Tyre/Road Noise Levels“. In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.152.
Der volle Inhalt der QuelleMucchi, Emiliano, Elena Pierro und Antonio Vecchio. „Experimental Guidelines for NVH Improvements in Helicopter Vibro-Acoustic Comfort“. In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87383.
Der volle Inhalt der QuelleZhang, Ning, Zhuang Li, Stanley Klemetson und Saikiran Yadagiri. „CFD and Acoustical Analyses for Coastal Highway Erosion“. In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37142.
Der volle Inhalt der QuelleWang, Lily M., und Siu-Kit Lau. „Studying architectural acoustics through the University of Nebraska's Architectural Engineering Program“. In 158th Meeting Acoustical Society of America. ASA, 2010. http://dx.doi.org/10.1121/1.3436574.
Der volle Inhalt der QuelleSharma, Sanjay, und Dennis Siginer. „Permeability Measurement of Orthotropic Fibers Under an Acoustic Force Field“. In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78567.
Der volle Inhalt der QuelleChevret, P., D. Vaucher De La Croix, J. P. Demars, J. Catalifaud, P. Mulocher, G. Le Compagnon und B. Florentz. „3D Inside Vehicle Acoustical Holography“. In International Body Engineering Conference & Exhibition and Automotive & Transportation Technology Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2002. http://dx.doi.org/10.4271/2002-01-2228.
Der volle Inhalt der QuelleKang, Yeon June, und J. Stuart Bolton. „Optimal Design of Acoustical Foam Treatments“. In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0449.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Acoustical engineering"
Mareze, Paulo Henrique, Ranny L. X. N. Michalski, Olavo M. Silva und William D'Andrea Fonseca. Resenhas de livros. William D’Andrea Fonseca, Juli 2020. http://dx.doi.org/10.55753/aev.v35e52.43.
Der volle Inhalt der QuelleWilliams, Locke, Gary Bell und Duncan Bryant. Setup and data collection process of an Acoustic Doppler Velocimeter (ADV) in a laboratory setting. Engineer Research and Development Center (U.S.), März 2022. http://dx.doi.org/10.21079/11681/43741.
Der volle Inhalt der QuelleTang, Dajun, Thomas Austin und Dezhang Chu. Three-Dimensional Acoustic in Situ Imaging of Sediments and Continuation Acoustic Imaging of Shallow Water Sediments Engineering Considerations. Fort Belvoir, VA: Defense Technical Information Center, Juni 1998. http://dx.doi.org/10.21236/ada348240.
Der volle Inhalt der QuelleMizrach, Amos, Michal Mazor, Amots Hetzroni, Joseph Grinshpun, Richard Mankin, Dennis Shuman, Nancy Epsky und Robert Heath. Male Song as a Tool for Trapping Female Medflies. United States Department of Agriculture, Dezember 2002. http://dx.doi.org/10.32747/2002.7586535.bard.
Der volle Inhalt der QuelleGramann, Richard A. ABF Algorithms Implemented at ARL:UT, Technical Report Under Contract N00039-91-C-0082, TD No. 01A1002, FDS System Engineering and Acoustics. Fort Belvoir, VA: Defense Technical Information Center, Mai 1992. http://dx.doi.org/10.21236/ada252368.
Der volle Inhalt der QuelleHart, Carl. Vibration survey of Room 47 with a laser doppler vibrometer : Main Laboratory Basement, U.S. Army ERDC-CRREL. Engineer Research and Development Center (U.S.), November 2020. http://dx.doi.org/10.21079/11681/38919.
Der volle Inhalt der QuelleQuinn, Meghan. Geotechnical effects on fiber optic distributed acoustic sensing performance. Engineer Research and Development Center (U.S.), Juli 2021. http://dx.doi.org/10.21079/11681/41325.
Der volle Inhalt der QuelleLimoges, A., A. Normandeau, J. B R Eamer, N. Van Nieuwenhove, M. Atkinson, H. Sharpe, T. Audet et al. 2022William-Kennedy expedition: Nunatsiavut Coastal Interaction Project (NCIP). Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/332085.
Der volle Inhalt der QuelleBlais-Stevens, A., A. Castagner, A. Grenier und K D Brewer. Preliminary results from a subbottom profiling survey of Seton Lake, British Columbia. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/332277.
Der volle Inhalt der QuelleBook reviews: Room Acoustics: Design and Modeling; Array Signal Processing: Concepts and Techniques; Acoustics in Building Rehabilitation; and Virtual Experiments in Mechanical Vibrations: Structural Dynamics and Signal Processing. Sociedade Brasileira de Acústica (Sobrac), Dezember 2022. http://dx.doi.org/10.55753/aev.v37e54.201.
Der volle Inhalt der Quelle