Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Acoustic wave control in water“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Acoustic wave control in water" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Acoustic wave control in water"
Norris, Andrew, Alexey S. Titovich und Michael Haberman. „Acoustic wave control with cylindrical metamaterial elements in water“. Journal of the Acoustical Society of America 138, Nr. 3 (September 2015): 1733. http://dx.doi.org/10.1121/1.4933459.
Der volle Inhalt der QuelleSISOMBAT, Félix, Thibaut DEVAUX, Samuel CALLé und Lionel HAUMESSER. „Acoustic reflector remotely tunable by the acoustic radiation force“. INTER-NOISE and NOISE-CON Congress and Conference Proceedings 270, Nr. 4 (04.10.2024): 7893–98. http://dx.doi.org/10.3397/in_2024_4019.
Der volle Inhalt der QuelleHe, Jiahuan, Wei Zhang, Dan Zhao, Nong Li, Qiang Kang, Kunpeng Cai, Li Wang et al. „Numerical Simulation Analysis of Control Factors on Acoustic Velocity in Carbonate Reservoirs“. Minerals 14, Nr. 4 (19.04.2024): 421. http://dx.doi.org/10.3390/min14040421.
Der volle Inhalt der QuelleKos̆tial, Pavol. „Surface acoustic wave control of the ion concentration in water“. Applied Acoustics 41, Nr. 2 (1994): 187–93. http://dx.doi.org/10.1016/0003-682x(94)90068-x.
Der volle Inhalt der QuelleKozaczka, Eugeniusz, Jacek Domagalski, Grażyna Grelowska und Ignacy Gloza. „Identification of hydro-acoustic waves emitted from floating units during mooring tests“. Polish Maritime Research 14, Nr. 4 (01.10.2007): 40–46. http://dx.doi.org/10.2478/v10012-007-0038-5.
Der volle Inhalt der QuelleAnisimkin, Vladimir, Vladimir Kolesov, Anastasia Kuznetsova, Elizaveta Shamsutdinova und Iren Kuznetsova. „An Analysis of the Water-to-Ice Phase Transition Using Acoustic Plate Waves“. Sensors 21, Nr. 3 (29.01.2021): 919. http://dx.doi.org/10.3390/s21030919.
Der volle Inhalt der QuelleLi, Qi, Ke Wu und Mingquan Zhang. „Two-Dimensional Composite Acoustic Metamaterials of Rectangular Unit Cell from Pentamode to Band Gap“. Crystals 11, Nr. 12 (25.11.2021): 1457. http://dx.doi.org/10.3390/cryst11121457.
Der volle Inhalt der QuelleKnight, Rosemary, Jack Dvorkin und Amos Nur. „Acoustic signatures of partial saturation“. GEOPHYSICS 63, Nr. 1 (Januar 1998): 132–38. http://dx.doi.org/10.1190/1.1444305.
Der volle Inhalt der QuelleMemon, Maria Muzamil, Qiong Liu, Ali Manthar, Tao Wang und Wanli Zhang. „Surface Acoustic Wave Humidity Sensor: A Review“. Micromachines 14, Nr. 5 (27.04.2023): 945. http://dx.doi.org/10.3390/mi14050945.
Der volle Inhalt der QuelleM’zoughi, Fares, Izaskun Garrido, Aitor J. Garrido und Manuel De La Sen. „Rotational Speed Control Using ANN-Based MPPT for OWC Based on Surface Elevation Measurements“. Applied Sciences 10, Nr. 24 (16.12.2020): 8975. http://dx.doi.org/10.3390/app10248975.
Der volle Inhalt der QuelleDissertationen zum Thema "Acoustic wave control in water"
Kourchi, Hasna. „Μétaréseaux pοur la réflexiοn et la transmissiοn anοrmales de frοnts d’οnde acοustique dans l’eau“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH36.
Der volle Inhalt der QuelleA metagrating is a periodic assembly of scatterers designed to reflect or refract a wave toward an anomalous direction, not predicted by Snell's law. In this work, we designed, fabricated, and experimentally characterized such metagratings for the control of ultrasonic waves in water, using brass tubes and cylinders as well as 3D-printed plastic supports. These metagratings enable the redirection of an incident wavefront to an arbitrarily desired direction with high efficiency (close to 100%), both in reflection on a surface (e.g., the water/air interface) and in transmission. The theoretical approach is based on the principles of Bragg diffraction and constructive and destructive wave interactions. The results of this thesis demonstrate the efficiency of metagratings in inducing acoustic phenomena such as retroreflection and asymmetric wave response, achieved through the use of resonant and non-resonant structures, validated by finite element simulations and experiments. This research opens new perspectives for the manipulation of underwater acoustic waves, with potential applications in the fields of wave detection, absorption, and reflection in marine environments
Awodele, M. Kofoworola. „Control of charge transports in semiconductor superlattices using an acoustic wave“. Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/16738.
Der volle Inhalt der QuelleTurnbull, Katharine Frances Vogan. „A surface acoustic wave frost point hygrometer for measurements of atmospheric water vapour“. Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619580.
Der volle Inhalt der Quelle葉子良 und Tsz-leung Yip. „Active water-wave control by a submerged pitching plate“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B31237976.
Der volle Inhalt der QuelleYip, Tsz-leung. „Active water-wave control by a submerged pitching plate /“. Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19003067.
Der volle Inhalt der QuelleEden, L. „Measurements of atmospheric water vapour using a balloon-borne surface acoustic wave frost point hygrometer“. Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598746.
Der volle Inhalt der QuelleChen, Feng. „Effect of mesoscale variability of water masses on acoustic wave propagation in a shallow sea“. Thesis, University of Plymouth, 2015. http://hdl.handle.net/10026.1/3219.
Der volle Inhalt der QuelleBuck, John R. (John Richard). „Single mode excitation in the shallow water acoustic channel using feedback control“. Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/40604.
Der volle Inhalt der QuelleLópez, Ríos Juan Carlos. „Water-wave equations and free boundary problems: inverse problems and control“. Tesis, Universidad de Chile, 2015. http://repositorio.uchile.cl/handle/2250/135179.
Der volle Inhalt der QuelleEn este trabajo se aborda el problema de existencia de algunos tipos de soluciones para las ecuaciones de ondas en el agua así como la relación que existe entre estas soluciones y la forma de un fondo impermeable sobre la que se desliza el fluido. Empezamos por describir las ecuaciones que modelan el fenómeno físico a partir de las leyes de conservación; el modelo general de las ecuaciones de ondas en el agua, escrito para la restricción de la velocidad potencial a la superficie libre, es \begin{equation*} \left\{ \begin{aligned} &\partial_t\zeta-G(\zeta,b)\psi=0, \\ &\partial_t\psi+g\zeta+\frac{1}{2}|\nabla_X\psi|^2-\frac{1}{2(1+|\nabla_X\zeta|^2)}(G(\zeta,b)\psi+\nabla_X\zeta\cdot\nabla_X\psi)^2=0, \end{aligned} \right. \end{equation*} donde $G=G(\zeta,b)\psi$ es el operador Dirichlet-Neumann, el cual contiene la información del fondo $b$, \begin{equation*} G(\zeta,b)\psi:=-\sqrt{1+|\nabla_X\zeta|^2}\partial_n\phi|_{y=\zeta(t,X)}, \end{equation*} y \begin{equation*} \left\{ \begin{array}{rl} & \Delta\phi=0, \quad \R\times(b,\zeta), \\ & \phi|_{y=\zeta}=\psi, \quad \partial_n \phi|_{y=b(X)}=0. \end{array} \right. \end{equation*} Después de describir las condiciones para un teorema de existencia y unicidad de soluciones de las ecuaciones de ondas en el agua, en espacios de Sobolev, nos preguntamos sobre el mínimo de datos necesarios, sobre la superficie libre, para identificar el fondo de manera única. Por la relación que existe entre el operador Dirichlet-Neumann y la velocidad dentro del fluido y utilizando la propiedad de continuación única de las funciones armónicas hemos probado que basta conocer el perfil, la velocidad potencial y la velocidad normal en un instante de tiempo dado y un abierto de $\R$, aún cuando nuestro sistema es de evolución. En la segunda parte se estudia la existencia de soluciones en forma de salto hidráulico para las ecuaciones estacionarias de ondas en el agua, en dimensión dos y su relación con la velocidad aguas arriba, caracterizada por un parámetro adimensional, llamado el número de Froude, $F$, como consecuencia de la existencia de ramas de bifurcación de la solución trivial para el problema \begin{equation*} \mathcal{F}(\eta,F)=\eta+F\widetilde{\psi}_{y^{\prime }}+\frac{\epsilon}{2}(% \widetilde{\psi}_{x^{\prime }}^2+\widetilde{\psi}_{y^{\prime }}^2)-\epsilon^2\eta_x\widetilde{\psi}_{x^{\prime }}\widetilde{\psi}% _{y^{\prime }}+\frac{\epsilon^3}{2}\eta_x^2\widetilde{\psi}_{y^{\prime }}^2; \end{equation*} donde \begin{equation*} \left\{ \begin{aligned} &\Delta\widetilde{\psi}=\epsilon G, && (-L,L)\times(0,1), \\ &\widetilde{\psi}_{x'}=0, && x'=-L,L, \\ &\widetilde{\psi}=0, && y'=0, \\ &\widetilde{\psi}=-F\eta, && y'=1. \end{aligned} \right. \end{equation*}
Dungan, Mary Elizabeth. „Development of a compact sound source for the active control of turbofan inlet noise /“. This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-03302010-020615/.
Der volle Inhalt der QuelleBücher zum Thema "Acoustic wave control in water"
Reddy, J. N. Water absorption studies on polymer coated piezoelectriccrystaland surface acoustic wave devices. Manchester: UMIST, 1994.
Den vollen Inhalt der Quelle findenUnited States. Environmental Protection Agency. Office of Water, Hrsg. WAVE, water management for the 21st century. [Washington, DC]: U.S. Environmental Protection Agency, Office of Water, 1999.
Den vollen Inhalt der Quelle findenHeadrick, Robert Hugh. Analysis of Internal Wave induced mode coupling effects on the 1995 SWARM experiment acoustic transmissions. Springfield, Va: Available from National Technical Information Service, 1997.
Den vollen Inhalt der Quelle findenBuck, John R. Single mode excitation in the shallow water acoustic channel using feedback control. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1996.
Den vollen Inhalt der Quelle findenFrisk, George V. Report on the Office of Naval Research Shallow Water Acoustics Workshop: April 24-26, 1991. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1992.
Den vollen Inhalt der Quelle findenAhrens, John. Irregular wave overtopping of seawall/revetment configurations, Roughans Point, Massachusetts: Experimental model study. [Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1986.
Den vollen Inhalt der Quelle findenAhrens, John. Irregular wave overtopping of seawall/revetment configurations, Roughans Point, Massachusetts: Experimental model study. [Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1986.
Den vollen Inhalt der Quelle findenZhou, Xiaoming, und Gengkai Hu. Acoustic Metamaterials and Wave Control. World Scientific Publishing Co Pte Ltd, 2018.
Den vollen Inhalt der Quelle findenKorde, Umesh A., und John V. Ringwood. Hydrodynamic Control of Wave Energy Devices. Cambridge University Press, 2016.
Den vollen Inhalt der Quelle findenRingwood, John, und Umesh A. Korde. Hydrodynamic Control of Wave Energy Devices. Cambridge University Press, 2016.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Acoustic wave control in water"
Stone, Austen, Timothy Waters und Jennifer Muggleton. „Focussing Acoustic Waves with Intent to Control Biofouling in Water Pipes“. In Mechanisms and Machine Science, 1059–68. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15758-5_109.
Der volle Inhalt der QuelleLin, Hejie, Turgay Bengisu und Zissimos P. Mourelatos. „Derivation of Acoustic Wave Equation“. In Lecture Notes on Acoustics and Noise Control, 27–48. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88213-6_2.
Der volle Inhalt der QuelleLin, Hejie, Turgay Bengisu und Zissimos P. Mourelatos. „Solutions of Acoustic Wave Equation“. In Lecture Notes on Acoustics and Noise Control, 49–79. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88213-6_3.
Der volle Inhalt der QuelleNayfeh, Adnan H. „Acoustic Wave Reflection from Water/Laminated Composite Interfaces“. In Review of Progress in Quantitative Nondestructive Evaluation, 1119–28. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1893-4_128.
Der volle Inhalt der QuelleKurosawa, Minoru Kuribayashi. „Surface Acoustic Wave Motor Modeling and Motion Control“. In Next-Generation Actuators Leading Breakthroughs, 7–18. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84882-991-6_2.
Der volle Inhalt der QuelleHoskin, R. E., B. M. Count, N. K. Nichols und D. A. C. Nicol. „Phase Control for the Oscillating Water Column“. In Hydrodynamics of Ocean Wave-Energy Utilization, 257–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82666-5_22.
Der volle Inhalt der QuelleRajan, Subramaniam D., und George V. Frisk. „The Effect of Seasonal Temperature Fluctuations in the Water Column on Sediment Compressional Wave Speed Profiles in Shallow Water“. In Ocean Variability & Acoustic Propagation, 69–80. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3312-8_5.
Der volle Inhalt der QuelleUscinski, B. J. „Acoustic Scattering in Wave-Covered Shallow Water. The Coherent Field“. In Impact of Littoral Environmental Variability of Acoustic Predictions and Sonar Performance, 329–36. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0626-2_41.
Der volle Inhalt der QuelleVolkov, Grigory A., Aleksey A. Gruzdkov und Yuri V. Petrov. „A Randomized Approach to Estimate Acoustic Strength of Water“. In Mechanics and Control of Solids and Structures, 633–40. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93076-9_30.
Der volle Inhalt der QuelleSantiago, J. A. F., und L. C. Wrobel. „Boundary Element Method for Two-Dimensional Shallow Water Acoustic Wave Propagation“. In IUTAM/IACM/IABEM Symposium on Advanced Mathematical and Computational Mechanics Aspects of the Boundary Element Method, 281–92. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9793-7_24.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Acoustic wave control in water"
Yun, Gu Qiu, Hu HaoHao, Wang Biao, Zhu RuiQi, Wang Kang und Zuo Wang. „Vibro-Acoustic Characteristics of Ribbed Cylindrical Shells in Shallow Water Based on Wave Superposition“. In 2024 OES China Ocean Acoustics (COA), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/coa58979.2024.10723699.
Der volle Inhalt der QuelleMokhtari, Alireza, und Vijay Chatoorgoon. „Study of Wall Thickness and Material Effect on Acoustic Wave Propagation in Water-Filled Piping“. In ASME 2012 Noise Control and Acoustics Division Conference at InterNoise 2012. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ncad2012-1131.
Der volle Inhalt der QuelleBender, Florian, Fabien Josse, Rachel E. Mohler und Antonio J. Ricco. „Design of SH-surface acoustic wave sensors for detection of ppb concentrations of BTEX in water“. In 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC). IEEE, 2013. http://dx.doi.org/10.1109/eftf-ifc.2013.6702067.
Der volle Inhalt der QuelleSracic, Michael W., Jordan D. Petrie, Henry A. Moroder, Ryan T. Koniecko, Andrew R. Abramczyk und Kamlesh Suthar. „Acoustic Pressure Fields Generated With a High Frequency Acoustic Levitator“. In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71849.
Der volle Inhalt der QuelleCai, Feyan, Hairong Zheng, Zhaojian He, Zhengyou Liu und Ji Wang. „Off-axis directional acoustic wave beaming control by an asymmetric rubber heterostructures film deposited on steel plate in water“. In 2009 IEEE International Ultrasonics Symposium. IEEE, 2009. http://dx.doi.org/10.1109/ultsym.2009.5441953.
Der volle Inhalt der QuelleFriedt, J. M., L. El Fissi, F. Cherioux, B. Guichardaz, V. Blondeau-Patissier und S. Ballandras. „Design and Use of Wafer Level Fluidic Packaging for Surface Acoustic Wave Sensors“. In 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum. IEEE, 2007. http://dx.doi.org/10.1109/freq.2007.4319099.
Der volle Inhalt der QuelleDunham, Eric M., Junwei Zhang und Dan Moos. „Constraints on Pipe Friction and Perforation Cluster Efficiency from Water Hammer Analysis“. In SPE Hydraulic Fracturing Technology Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/212337-ms.
Der volle Inhalt der QuelleAndrienko, Yu A. „Generation of focused shock waves in medicine using lasers“. In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/cleo_europe.1994.cwf22.
Der volle Inhalt der QuelleGupta, Samikhshak, und Vijaya V. N. Sriram Malladi. „Utilizing Steady-State Traveling Waves in a Quiescent Water Environment for Particle Propulsion“. In ASME 2024 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/smasis2024-140461.
Der volle Inhalt der QuelleWang, Y. Jenny, und Brian W. Anthony. „Using Local Concentration to Model the Progress of Acoustophoretic Assembly of Microspheres in Planar Standing Waves“. In ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-112310.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Acoustic wave control in water"
Yamamoto, Tokuo. Models of Acoustic Wave Scattering at 0.2-10 kHz From Turbulence in Shallow Water. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada533110.
Der volle Inhalt der QuelleOrr, Marshall H. The Influence of the Shallow Water Internal Wave Field on the Properties of Acoustic Signals. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada629255.
Der volle Inhalt der QuelleGodin, Oleg A., und Alexander G. Voronovich. Multiple Scattering of Sound by Internal Waves and Acoustic Characterization of Internal Wave Fields in Deep and Shallow Water. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada613572.
Der volle Inhalt der QuelleGodin, Oleg A., und Alexander G. Voronovich. Multiple Scattering of Sound by Internal Waves and Acoustic Characterization of Internal Wave Fields in Deep and Shallow Water. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada541756.
Der volle Inhalt der QuelleYamamoto, Tokuo. Measurement and Modeling of Low Frequency Acoustic Wave Propagation and Scattering in Shallow Water with Comprehensive Subbottom Structure Measurements. Fort Belvoir, VA: Defense Technical Information Center, Februar 1996. http://dx.doi.org/10.21236/ada305049.
Der volle Inhalt der QuelleKhan, Fenton, Gary E. Johnson, Ida M. Royer, Nathan RJ Phillips, James S. Hughes, Eric S. Fischer, Kenneth D. Ham und Gene R. Ploskey. Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control Tower at Cougar Dam, 2010. Office of Scientific and Technical Information (OSTI), April 2012. http://dx.doi.org/10.2172/1042547.
Der volle Inhalt der QuelleKhan, Fenton, Gary E. Johnson, Ida M. Royer, Nathan RJ Phillips, James S. Hughes, Eric S. Fischer und Gene R. Ploskey. Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control Tower at Cougar Dam, 2010. Office of Scientific and Technical Information (OSTI), Oktober 2011. http://dx.doi.org/10.2172/1029871.
Der volle Inhalt der QuelleWadman, Heidi, und Jesse McNinch. Use of chirp sub-bottom acoustics to assess integrity of water-control structures : Inner Harbor Navigation Canal Lock, New Orleans. Engineer Research and Development Center (U.S.), September 2024. http://dx.doi.org/10.21079/11681/49198.
Der volle Inhalt der QuellePosacka, Anna, und Peter Ross. Tackling microfibre pollution through science, policy, and innovation: A framework for Canadian leadership. Raincoast Conservation Foundation, November 2024. http://dx.doi.org/10.70766/47.9973.
Der volle Inhalt der QuelleO'Connell, Kelly, David Burdick, Melissa Vaccarino, Colin Lock, Greg Zimmerman und Yakuta Bhagat. Coral species inventory at War in the Pacific National Historical Park: Final report. National Park Service, 2024. http://dx.doi.org/10.36967/2302040.
Der volle Inhalt der Quelle