Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Acoustic material characterisatio“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Acoustic material characterisatio" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Acoustic material characterisatio"
Zhao, Tianfei, Baorui Pan, Xiang Song, Dan Sui, Heye Xiao und Jie Zhou. „Heuristic Approaches Based on Modified Three-Parameter Model for Inverse Acoustic Characterisation of Sintered Metal Fibre Materials“. Mathematics 10, Nr. 18 (08.09.2022): 3264. http://dx.doi.org/10.3390/math10183264.
Der volle Inhalt der QuellePETTONI POSSENTI, Vincenzo, Emanuele MACCAFERRI, Gioia FUSARO, Luca BARBARESI und Laura MAZZOCCHETTI. „Preliminary investigation of nanofibrous membranes for sound absorption“. INTER-NOISE and NOISE-CON Congress and Conference Proceedings 270, Nr. 4 (04.10.2024): 7051–57. http://dx.doi.org/10.3397/in_2024_3903.
Der volle Inhalt der QuelleTandon, R. P., und Ramadhar Singh. „Development and Characterisation of Composite Hydrophones“. Engineering Plastics 2, Nr. 5 (Januar 1994): 147823919400200. http://dx.doi.org/10.1177/147823919400200502.
Der volle Inhalt der QuelleTandon, R. P., und Ramadhar Singh. „Development and Characterisation of Composite Hydrophones“. Polymers and Polymer Composites 2, Nr. 5 (Januar 1994): 287–92. http://dx.doi.org/10.1177/096739119400200502.
Der volle Inhalt der QuelleNuawi, Mohd Zaki, Abdul Rahim Bahari, Shahrum Abdullah, Ahmad Kamal Ariffin Mohd Ihsan und Fauziana Lamin. „Material Property Characterisation Method Using Vibro-Acoustic Signals“. Applied Mechanics and Materials 663 (Oktober 2014): 447–52. http://dx.doi.org/10.4028/www.scientific.net/amm.663.447.
Der volle Inhalt der QuelleWłodarska, Dorota, Andrzej Klepka, Wieslaw Jerzy Staszewski und Tadeusz Uhl. „Comparative Study of Instantaneous Frequency Extraction in Nonlinear Acoustics Used for Structural Damage Detection“. Key Engineering Materials 588 (Oktober 2013): 33–42. http://dx.doi.org/10.4028/www.scientific.net/kem.588.33.
Der volle Inhalt der QuelleWang, Lian, Lian Wang und Victor Humphrey. „The use of a parametric array source and nearfield scanning in the characterisation of panel materials for underwater acoustics“. INTER-NOISE and NOISE-CON Congress and Conference Proceedings 265, Nr. 1 (01.02.2023): 6403–12. http://dx.doi.org/10.3397/in_2022_0965.
Der volle Inhalt der QuelleMao, Huina, Romain Rumpler und Peter Göransson. „An inverse method for design and characterisation of acoustic materials“. MATEC Web of Conferences 304 (2019): 02002. http://dx.doi.org/10.1051/matecconf/201930402002.
Der volle Inhalt der QuelleClaes, Leander, Sarah Johannesmann, Henning Zeipert und Bernd Henning. „Broadband acoustic waves in plate-like structures for acoustic material characterisation“. Journal of Physics: Conference Series 2822, Nr. 1 (01.09.2024): 012171. http://dx.doi.org/10.1088/1742-6596/2822/1/012171.
Der volle Inhalt der QuelleCiaburro, Giuseppe, Gino Iannace, Laura Ricciotti, Antonio Apicella, Valeria Perrotta und Raffaella Aversa. „Acoustic Applications of a Foamed Geopolymeric-Architected Metamaterial“. Applied Sciences 14, Nr. 3 (31.01.2024): 1207. http://dx.doi.org/10.3390/app14031207.
Der volle Inhalt der QuelleDissertationen zum Thema "Acoustic material characterisatio"
Manoochehrnia, Pooyan. „Characterisatiοn οf viscοelastic films οn substrate by acοustic micrοscοpy. Direct and inverse prοblems“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH38.
Der volle Inhalt der QuelleIn the framework of this PhD thesis, the characterisation of the thick and thin films deposited on asubstrate has been done using acoustic microscopy via direct and inverse problem-solving algorithms.Namely the Strohm’s method is used for direct problem-solving while a variety of mathematical modelsincluding Debye series model (DSM), transmission line model (TLM) and spectral method using ratiobetween multiple reflections model (MRM) have been used to solve inverse-problem. A specificapplication of acoustic microscopy has been used consisting of mounting the plane-wave high frequency(50 MHz and 200MHz) transducers instead of use of the traditional focus transducers used for acousticimaging as well as using full-wave A-scan which could be well extended to bulk analysis of consecutivescans. Models have been validated experimentally by a thick film made of epoxy-resin with thicknessof about 100μm and a thin film made of polish of about 8μm. The characterised parameters includemechanical parameters (e.g. density and thickness) as well as viscoelastic parameters (e.g. acousticlongitudinal velocity and acoustic attenuation) and occasionally transducer phase-shift
Guastavino, Rémi. „Elastic and acoustic characterisation of anisotropic porous materials“. Doctoral thesis, KTH, MWL Marcus Wallenberg Laboratoriet, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4782.
Der volle Inhalt der QuelleQC 20100729
Guastavino, Rémi. „Elastic and acoustic characterisation of anisotropic porous materials /“. Stockholm : Department of Aeronautical and Vehicle Engineering, Royal Institute of Technology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4782.
Der volle Inhalt der QuelleVan, der Kelen Christophe. „Vibro-acoustic modelling of anisotropic poroelastic materials : characterisation of the anisotropic properties“. Doctoral thesis, KTH, MWL Strukturakustik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-137809.
Der volle Inhalt der QuelleQC 20131219
Sun, Chao. „Acoustic characterisation of ultrasound contrast agents at high frequency“. Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8093.
Der volle Inhalt der QuelleUkpai, Jonathan I. „Erosion-corrosion characterisation for pipeline materials using combined acoustic emission and electrochemical monitoring“. Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/7328/.
Der volle Inhalt der QuelleVan, der Kelen Christophe. „Characterisation of anisotropic acoustic properties of porous materials - inverse estimation of static flow resistivity“. Licentiate thesis, KTH, MWL Strukturakustik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-31183.
Der volle Inhalt der QuelleQC 20110311
Zlatev, Zahari. „Ultrasonic guided wave propagation in pipes coated with viscoelastic materials“. Thesis, Brunel University, 2014. http://bura.brunel.ac.uk/handle/2438/12753.
Der volle Inhalt der QuelleWindisch, Thomas. „Laser-akustische Messtechnik in der Materialcharakterisierung“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-209721.
Der volle Inhalt der QuellePrüfsysteme, welche die Ausbreitungseigenschaften elastischer Wellen zur Ableitung spezifischer Messgrößen nutzen, sind etablierte Messverfahren. Voraussetzung für zuverlässige Ergebnisse ist stets die sichere akustische Kopplung zwischen Sensor und Material. Daher arbeiten hochauflösende Prüfsysteme mit Fluiden als Koppelmedium. Unter bestimmten Bedingungen scheiden kontaktierende Ultraschallsysteme allerdings ersatzlos aus. Dies ist beispielsweise der Fall, wenn die Probe eine besonders niedrige oder hohe Temperatur besitzt, topografische Eigenschaften ein sicheres Ankoppeln der Kontaktprüfköpfe erschweren, Diffusionsvorgänge oder Löslichkeiten zu beachten sind, in Vakuum zu arbeiten ist oder erhöhte Reinheitsanforderungen vorliegen. Gegenstand der vorliegenden Arbeit ist eine Technik welche hilft, diese Einschränkungen zu umgehen. Mit dem Aufkommen der ersten Laserquellen entstanden die wissenschaftlichen Grundlagen zur kontaktlosen Anregung und Detektion von Ultraschall. Die rasante Entwicklung kommerziell verfügbarer Lasersysteme der vergangenen Dekade wurde zum Anlass genommen zu untersuchen, in wie weit sich die einst wissenschaftlich orientierte Laboraufbauten zu einem anwendungsnahen Messsystem zusammenführen lassen. Basis der Arbeiten ist die thermoelastische Anregung von Ultraschall in Kombination mit einer ebenfalls kontaktlosen Detektion. Damit entsteht eine geschlossene Messkette welche erstmals die Eigenschaften zerstörungsfrei, kontaktlos und anwendungsorientiert in einem Ultraschallmesssystem vereint. Ausgangspunkt stellt die thermische Simulation der Anregung dar. Mit Hilfe präzisierter Gleichungen wird eine lokale Erwärmung von lediglich 100 K vorausgesagt. Für die zur Auslegung eines akustischen Messsystems notwendige Schallfeldsimulation wurde eine weitere Problematik identifiziert. Während bekannte Rechenansätze stets analytisch beschreibbare Strahlprofile des Lasers voraussetzen, zeigen reale Laserquellen kompliziert gestaltete räumliche Intensitätsverteilungen. Auf Basis einer vorangestellten CEFIT-Simulation ist mit der entwickelten CPSS-Methode eine zeitdiskrete Berechnung der 3D-Wellenausbreitung beliebiger Quellgeometrien möglich. Vergleiche mit realen Messdaten bestätigen die Simulationsrechnungen. Anhand ausgewählter Messszenarien wird die Praxistauglichkeit der kontaktlosen Arbeitsweise demonstriert. Neben der Charakterisierung einer offenporigen keramischen Beschichtung erlauben Transmissionsmessungen die Berechnung der longitudinalen und transversalen Schallgeschwindigkeiten. Ebenso ist die Abbildung wie auch die Beurteilung der Tiefenlage von Referenzfehlern mit lediglich 0,7 mm Durchmesser möglich. In Reflexionsmessungen wurde eine Auflösungsgrenze von mindestens KSR = 1 mm in 4,5 mm Tiefe nachgewiesen. Weitere Beispiele zeigen die Sensitivität hinsichtlich oberflächennaher Fehler, die Auswertung der anspruchsvollen „Zero Group Velocity“ S1-Mode der Lambwelle wie auch die Nutzung eingebetteter Quellen
Bentahar, Mourad. „Acoustique non-linéaire : application à la caractérisation ultrasonore de l'endommagement des matériaux hétérogènes et à la prédiction de la durée de vieNonlinear acoustics : application to ultrasonic characterisation of damage in heterogeneous materials and remaining life determination“. Lyon, INSA, 2005. http://theses.insa-lyon.fr/publication/2005ISAL0038/these.pdf.
Der volle Inhalt der QuelleIn this work, we have studied the potentials of nondestructive evaluation methods using resonant nonlinear acoustics phenomena to characterize and follow damage induced in heterogeneous materials (concrete and polymer composites). For this, we have conceived an experimental device adapted to different geometries, which allows contact and contactless reception. For both materials, changes of the resonance frequency with increasing excitation level “fast dynamics” were correlated to the damage level. As a response to the application a strong excitation, resonance frequency of damage samples shifts to low frequencies. This shift does not disappear instantaneously when the strong excitation is removed but changes as a logarithm of time. The duration of the frequency recovery is strongly dependent on the damage state. Through this phenomenon, called “slow dynamics”, we have defined new damage indicators very sensitive to primary damage states. For concrete, these observations, which manifest hysteretic nonlinear behavior of damaged materials, are supported qualitatively and quantitatively by a one-dimensional model based on the phenomenological description of Preisach-Mayergoitz. We have found interesting correlations between the different nonlinear damage indicators (slow and fast dynamics) and the elastic energy, freed by the material during the damage process, calculated through acoustic emission signals. This result, linking for the first time hysteretic nonlinear acoustics emission, offers a good opportunity and future prospects for structural health monitoring of heterogeneous materials and their remaining life determination
Buchteile zum Thema "Acoustic material characterisatio"
Andersen, Kristian Gjerrestad, Gbanaibolou Jombo, Sikiru Oluwarotimi Ismail, Yong Kang Chen, Hom Nath Dhakal und Yu Zhang. „Damage Characterisation in Composite Laminates Using Vibro-Acoustic Technique“. In Springer Proceedings in Energy, 275–82. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_34.
Der volle Inhalt der QuellePfleiderer, K., R. Stoessel, I. Solodov und G. Busse. „Acoustic Imaging with Surace and Lamb Waves for NDE and Material Characterisation“. In Acoustical Imaging, 157–64. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2402-3_20.
Der volle Inhalt der QuellePullin, Rhys, Karen M. Holford, Sam L. Evans und Matthew Baxter. „Advanced Location and Characterisation of Damage in Complex Metallic Structures Using Acoustic Emission“. In Experimental Analysis of Nano and Engineering Materials and Structures, 925–26. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6239-1_460.
Der volle Inhalt der QuelleSchoone, Sunny, Tobias Vraetz, Ralph Baltes und Elisabeth Clausen. „Blue Nodules: Use of Acoustic Emission Technology for an Inline Characterisation of Hydraulic Material Streams“. In Yearbook of Sustainable Smart Mining and Energy 2021, 213–27. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-84315-1_12.
Der volle Inhalt der QuelleFey, P., D. Döring, G. Busse, J. Frick, F. Grüner und M. Kersemans. „Preliminary results on non-contact characterisation of weathered mineral materials by surface acoustic waves“. In Emerging Technologies in Non-Destructive Testing V, 271–74. CRC Press, 2012. http://dx.doi.org/10.1201/b11837-48.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Acoustic material characterisatio"
RODRÍGUEZ, CARLOS, ISIDRO SÁNCHEZ, SALVADOR MARTÍNEZ, JESÚS CARBAJO, JAIME RAMIS und IGNACIO GARCÍA-LEGAZ. „USE OF RECYCLED AGGREGATES FROM DEMOLITION WASTES IN CONCRETE: ACOUSTIC PROPERTIES“. In MATERIALS CHARACTERISATION 2019. Southampton UK: WIT Press, 2019. http://dx.doi.org/10.2495/mc190041.
Der volle Inhalt der QuelleASTRAUSKAS, Tomas, Mantas PRANSKEVIČIUS und Tomas JANUŠEVIČIUS. „Primary study of plastic micro fibre waste for sound absorption applications“. In 12th International Conference “Environmental Engineering”. VILNIUS TECH, 2023. http://dx.doi.org/10.3846/enviro.2023.867.
Der volle Inhalt der QuellePiana, Edoardo Alessio. „Acoustic characterisation of hosiery factory waste materials“. In 2023 Immersive and 3D Audio: from Architecture to Automotive (I3DA). IEEE, 2023. http://dx.doi.org/10.1109/i3da57090.2023.10414191.
Der volle Inhalt der QuelleCARROLL, NL, RJ PAMLEY und JD SMITH. „MATERIALS CHARACTERISATION USING IMPEDANCE TUBE TECHNIQUES“. In Underwater Acoustic Calibration and Measurements 1998. Institute of Acoustics, 2024. http://dx.doi.org/10.25144/18903.
Der volle Inhalt der QuelleHOPPER, C., S. ASSOUS, DA GUNN, PD JACKSON, JG REES, MA LOVELL und LM LINNETT. „BIOLOGICALLY-INSPIRED ULTRASONIC SIGNALS FOR PHYSICAL CHARACTERISATION OF GEOLOGICAL MATERIALS“. In Spring Conference Acoustics 2008. Institute of Acoustics, 2023. http://dx.doi.org/10.25144/17543.
Der volle Inhalt der QuelleGIANGRECO, CJ. „CHARACTERISATION OF MATERIALS FOR UNDERWATER ACOUSTICS APPLICATIONS USING TEST PANEL MEASUREMENTS“. In Underwater Acoustic Calibration and Measurements 1998. Institute of Acoustics, 2024. http://dx.doi.org/10.25144/18899.
Der volle Inhalt der QuelleZou, H., Y. Li, S. Smith, A. S. Bunting, A. J. Walton und J. G. Terry. „Modification and characterisation of material hydrophobicity for surface acoustic wave driven microfluidics“. In 2012 IEEE International Conference on Microelectronic Test Structures (ICMTS). IEEE, 2012. http://dx.doi.org/10.1109/icmts.2012.6190614.
Der volle Inhalt der QuelleGardiner, Alicia, Roger Domingo-Roca, Mahshid Hafezi, James Windmill und Andrew Feeney. „Characterisation of 3D printable material for an acoustic metamaterial cell with tuneable resonance“. In 2024 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). IEEE, 2024. http://dx.doi.org/10.1109/fleps61194.2024.10603566.
Der volle Inhalt der QuelleLow, S. K. „Quantitative characterisation of acoustic emission source for composite failure mechanism under quasi-static three-point bending“. In Structural Health Monitoring. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902455-25.
Der volle Inhalt der QuelleKetoja, J. A., S. Paunonen, E. Pääkkönen, T. Pöhler, T. Turpeinen, A. Miettinen, T. Mäkinen, J. Koivisto und M. J. Alava. „Mean-field Approach to Compression of Thick Porous Fibre Networks“. In Advances in Pulp and Paper Research. Pulp & Paper Fundamental Research Committee (FRC), Manchester, 2022. http://dx.doi.org/10.15376/frc.2022.1.371.
Der volle Inhalt der Quelle