Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Acoustic field prediction“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Acoustic field prediction" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Acoustic field prediction"
Yang, Da, und Cheuk Ming Mak. „A combined sound field prediction method in small classrooms“. Building Services Engineering Research and Technology 42, Nr. 4 (20.02.2021): 375–88. http://dx.doi.org/10.1177/0143624421994229.
Der volle Inhalt der QuelleJierula, Alipujiang, Shuhong Wang, Tae-Min OH und Pengyu Wang. „Study on Accuracy Metrics for Evaluating the Predictions of Damage Locations in Deep Piles Using Artificial Neural Networks with Acoustic Emission Data“. Applied Sciences 11, Nr. 5 (05.03.2021): 2314. http://dx.doi.org/10.3390/app11052314.
Der volle Inhalt der QuelleSemiletov, Vasily A., und Sergey A. Karabasov. „Similarity scaling of jet noise sources for low-order jet noise modelling based on the Goldstein generalised acoustic analogy“. International Journal of Aeroacoustics 16, Nr. 6 (September 2017): 476–90. http://dx.doi.org/10.1177/1475472x17730457.
Der volle Inhalt der QuelleMiller, SAE, und Alexander N. Carr. „Theoretical investigation of alteration and radiation of large-scale structures due to jet impingement“. International Journal of Aeroacoustics 18, Nr. 2-3 (20.12.2018): 231–57. http://dx.doi.org/10.1177/1475472x18812810.
Der volle Inhalt der QuelleZhong, Siyang, und Xin Zhang. „A sound extrapolation method for aeroacoustics far-field prediction in presence of vortical waves“. Journal of Fluid Mechanics 820 (08.05.2017): 424–50. http://dx.doi.org/10.1017/jfm.2017.219.
Der volle Inhalt der QuelleSalin, M. B., und D. A. Kosteev. „Nearfield acoustic holography-based methods for far field prediction“. Applied Acoustics 159 (Februar 2020): 107099. http://dx.doi.org/10.1016/j.apacoust.2019.107099.
Der volle Inhalt der QuelleGao, Sheng Yao, und De Shi Wang. „An Indirect Boundary Element Method for Computing Sound Field“. Advanced Materials Research 476-478 (Februar 2012): 1173–77. http://dx.doi.org/10.4028/www.scientific.net/amr.476-478.1173.
Der volle Inhalt der QuelleTao, Jun, Gang Sun, Ying Hu und Miao Zhang. „Noise Prediction for Multi-Element Airfoil Based on FW-H Equation“. Applied Mechanics and Materials 52-54 (März 2011): 1388–93. http://dx.doi.org/10.4028/www.scientific.net/amm.52-54.1388.
Der volle Inhalt der QuelleLebon, Bruno, Iakovos Tzanakis, Koulis Pericleous und Dmitry Eskin. „Numerical Modelling of the Ultrasonic Treatment of Aluminium Melts: An Overview of Recent Advances“. Materials 12, Nr. 19 (06.10.2019): 3262. http://dx.doi.org/10.3390/ma12193262.
Der volle Inhalt der Quellede Souza, Mauricy Cesar R., und Samir N. Y. Gerges. „Prediction of Sound Level in Rooms and Experimental Validation“. Building Acoustics 4, Nr. 2 (Juni 1997): 117–35. http://dx.doi.org/10.1177/1351010x9700400204.
Der volle Inhalt der QuelleDissertationen zum Thema "Acoustic field prediction"
Kücükcoskun, Korcan. „Prediction of free and scattered acoustic fields of low-speed fans“. Phd thesis, Ecole Centrale de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-00758274.
Der volle Inhalt der QuelleMajvald, František. „Metody akustické holografie v blízkém poli v prostředí LabVIEW“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442539.
Der volle Inhalt der QuelleChan, Gary Ka-Yue. „Prediction of low-frequency sound-pressure fields in fitted rooms for active noise control“. Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/214.
Der volle Inhalt der QuelleWang, Yuebing. „The application of optical interferometry to the measurement and prediction of focused acoustic fields“. Thesis, Loughborough University, 2008. https://dspace.lboro.ac.uk/2134/33661.
Der volle Inhalt der QuelleCousins, Owen Mathew. „Prediction of sound pressure and intensity fields in rooms and near surfaces by ray tracing“. Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/843.
Der volle Inhalt der QuelleWei, Jiangtao. „Modelling of fuselage/floor structures and associated cabin acoustics for the prediction of propeller induced interior sound fields“. Thesis, University of Southampton, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361553.
Der volle Inhalt der QuelleZachariah, Cherian Renil. „Statistical Model for Predicting Multiple Sclerosis Cortical Lesion Detection Rates with Ultra High Field Imaging“. The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1293726279.
Der volle Inhalt der QuelleLee, Kyung Taek. „Evaluation of the computational validity of the image model in predicting the sound field in a wedge-shaped layer using acoustical reciprocity“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School; Available from the National Technical Information Service, 1991. http://edocs.nps.edu/npspubs/scholarly/theses/1991/Dec/91Dec_Lee.pdf.
Der volle Inhalt der QuelleThesis advisor(s): Coppens, Alan B. ; Sanders, James V. "December 1991." Includes bibliographical references. Also available online.
Pignier, Nicolas. „Predicting the sound field from aeroacoustic sources on moving vehicles : Towards an improved urban environment“. Doctoral thesis, KTH, Farkost och flyg, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-205791.
Der volle Inhalt der QuelleI ett samhälle där buller håller på att bli ett stort hälsoproblem och en ekonomisk belastning, är ljudutsläpp en allt viktigare aspekt för fordonstillverkare. Då ungefär en fjärdedel av den europeiska befolkningen bor nära vägar med tung trafik, är åtgärder för minskat trafikbuller i stadsmiljö en hög prioritet. Introduktionen av elfordon på marknaden och behovet av ljudsystem för att varna omgivningen kräver också ett nytt synsätt och tekniska angreppssätt som behandlar bullerproblemen ur ett bredare perspektiv. Buller bör inte längre betraktas som en biprodukt av konstruktionen, utan som en integrerad del av den. Att utveckla mer hållbara marktransporter kommer att kräva en bättre förståelse av det utstrålade ljudfältet vid olika realistiska driftsförhållanden, utöver de nuvarande standardiserade kraven för förbifartstest som utförs i ett fritt fält. En viktig aspekt för att förbättra denna förståelse är utvecklingen av effektiva numeriska verktyg för att beräkna ljudalstring och ljudutbredning från fordon i rörelse. I denna avhandling föreslås en metodik som syftar till att utvärdera förbifartsljud som alstras av fordons akustiska källor i en förenklad stadsmiljö, här med fokus på strömningsgenererat ljud. Även om det aerodynamiska bullret är fortfarande en liten del av de totala bullret från vägfordon i urbana miljöer, kommer denna andel säkerligen att öka inom en snar framtid med införandet av tysta elektriska motorer och de bullerreducerande däck som introduceras på marknaden. I detta arbete presenteras en komplett modellering av problemet från ljudalstring till ljudutbredning och förbifartsanalys i tre steg. Utgångspunkten är beräkningar av strömningen kring geometrin av intresse; det andra steget är identifiering av ljudkällorna som genereras av strömningen, och det tredje steget rör ljudutbredning från rörliga källor till observatörer, inklusive effekten av reflektioner och spridning från närliggande ytor. I det första steget löses flödet genom detached-eddy simulation (DES) för kompressibel strömning. Identifiering av ljudkällor i det andra steget görs med direkt numerisk lobformning med avfaltning med hjälp av linjärprogrammering, där källdata extraheras från flödessimuleringarna. Resultatet av detta steg är en uppsättning av okorrelerade akustiska monopolkällor. Steg tre utnyttjar dessa källor som indata till en ljudutbredningsmodel baserad på beräkningar punkt-till-punkt med Greensfunktioner för rörliga källor, och med en modifierad Kirchhoff-integral under Kirchhoffapproximationen för att beräkna reflektioner mot byggda ytor. Metodiken demonstreras med exemplet med det aeroakustiska ljud som genereras av ett NACA-luftintag som rör sig i en förenklad urban miljö. Med hjälp av denna metod kan man få insikter om ljudalstringsmekanismer, om källegenskaper och om ljudfältet som genereras av källor när de rör sig i en förenklad stadsmiljö.
QC 20170425
Mhatre, Natasha. „The Prediction Of Field Cricket Phonotaxis In Complex Acoustic Environments“. Thesis, 2007. http://hdl.handle.net/2005/883.
Der volle Inhalt der QuelleBücher zum Thema "Acoustic field prediction"
Fan noise prediction system development: Source/radiation field coupling and workstation conversion for the acoustic radiation code. [Washington, DC: National Aeronautics and Space Administration, 1993.
Den vollen Inhalt der Quelle findenR, Moselle J., und United States. National Aeronautics and Space Administration., Hrsg. A hybrid numerical technique for predicting the aerodynamic and acoustic fields of advanced turboprops: Final report. Buffalo, N.Y: Arvin Calspan Advanced Technology Center, 1988.
Den vollen Inhalt der Quelle findenLeonid, Oliker, Biswas Rupak und Research Institute for Advanced Computer Science (U.S.), Hrsg. New computational methods for the prediction and analysis of helicopter noise. [Moffett Field, Calif.]: Research Institute for Advanced Computer Science, NASA Ames Research Center, 1996.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration, Hrsg. Prediction of sound fields in acoustical cavities using the boundary element method: A thesis submitted to the faculty of Purdue University. [Washington, DC: National Aeronautics and Space Administration, 1985.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Acoustic field prediction"
Kampanis, N. A. „Fast and Accurate Finite Element Methods for the Numerical Prediction of the Acoustic Field“. In Full Field Inversion Methods in Ocean and Seismo-Acoustics, 21–26. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8476-0_4.
Der volle Inhalt der QuelleEwart, T. E., und S. A. Reynolds. „Experimental Ocean Acoustic Field Moments Versus Predictions“. In Ocean Variability & Acoustic Propagation, 23–40. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3312-8_2.
Der volle Inhalt der QuellePowers, John P., Benito Baylosis, Peter Gatchell und William Reid. „Experimental Comparison of Measured Ultrasound Pressure Fields with Theoretical Prediction“. In Acoustical Imaging, 51–56. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4419-8772-3_8.
Der volle Inhalt der QuelleRüttgers, Mario, Seong-Ryong Koh, Jenia Jitsev, Wolfgang Schröder und Andreas Lintermann. „Prediction of Acoustic Fields Using a Lattice-Boltzmann Method and Deep Learning“. In Lecture Notes in Computer Science, 81–101. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59851-8_6.
Der volle Inhalt der QuelleMcdonald, B. Edward, Joe Lingevitch und Michael Collins. „Effects of Environmental Variability on Focused Acoustic Fields“. In Impact of Littoral Environmental Variability of Acoustic Predictions and Sonar Performance, 377–83. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0626-2_47.
Der volle Inhalt der QuelleUscinski, B. J. „Acoustic Scattering in Wave-Covered Shallow Water. The Coherent Field“. In Impact of Littoral Environmental Variability of Acoustic Predictions and Sonar Performance, 329–36. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0626-2_41.
Der volle Inhalt der QuelleLermusiaux, P. F. J., und C. S. Chiu. „Four-Dimensional Data Assimilation for Coupled Physical-Acoustical Fields“. In Impact of Littoral Environmental Variability of Acoustic Predictions and Sonar Performance, 417–24. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0626-2_52.
Der volle Inhalt der QuelleSturm, F., M. C. Pelissier und D. Fattaccioli. „Development of an Acoustic Field Predictor in a Three Dimensional Oceanic Environment“. In Full Field Inversion Methods in Ocean and Seismo-Acoustics, 63–68. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8476-0_11.
Der volle Inhalt der QuelleStasiunas, Eric C., Matthew K. Raymer und Garrett D. Nelson. „Predicting Flight Environments with a Small-Scale, Direct-Field Acoustic Test Facility“. In Sensors and Instrumentation, Volume 5, 87–98. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54987-3_10.
Der volle Inhalt der QuelleSchütz, Daniel, und Holger Foysi. „Towards the Prediction of Flow and Acoustic Fields of a Jet-Wing-Flap Configuration“. In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 659–69. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64519-3_59.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Acoustic field prediction"
Wang, Yuebing. „Prediction of acoustic field radiated from focusing transducer“. In 2013 6th International Congress on Image and Signal Processing (CISP). IEEE, 2013. http://dx.doi.org/10.1109/cisp.2013.6743894.
Der volle Inhalt der QuelleYao, Weigang, Min Xu und Zhimin Chen. „LES Prediction of Flow and Acoustic Field of Free Jet“. In 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-2973.
Der volle Inhalt der QuelleMartins, Nelson, Paulo Felisberto und Sergio M. Jesus. „Acoustic field calibration for noise prediction: The CALCOM' 10 data set“. In OCEANS 2011 - SPAIN. IEEE, 2011. http://dx.doi.org/10.1109/oceans-spain.2011.6003539.
Der volle Inhalt der QuelleAndersson, Niklas, Lars-Erik Eriksson und Lars Davidson. „LES Prediction of Flow and Acoustic Field of a Coaxial Jet“. In 11th AIAA/CEAS Aeroacoustics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-2884.
Der volle Inhalt der QuelleSharma, Sanjay, und Dennis Siginer. „Permeability Measurement of Orthotropic Fibers Under an Acoustic Force Field“. In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78567.
Der volle Inhalt der QuelleSeto, Mae L., Rubens Campregher, Stefan Murphy und Julio Militzer. „Prediction of Ship Acoustic Signature Due to Fluid Flow“. In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43343.
Der volle Inhalt der QuelleErwin, James P., und Neeraj Sinha. „Near and Far-Field Investigations of Supersonic Jet Noise Predictions Using a Coupled LES and FW-H Equation Method“. In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45210.
Der volle Inhalt der QuelleStanko, T., D. B. Ingham, M. Fairweather und M. Pourkashanian. „Application of RANS and FWH Modelling to the Prediction of Noise From Round Jets“. In ASME Turbo Expo 2009: Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-59620.
Der volle Inhalt der QuelleKurbatskii, Konstantin A., Saravana Kumar und Hossam A. El-Asrag. „Numerical Prediction of Mean Flow and Acoustic Field of a Supersonic Impinging Jet“. In 52nd Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-0559.
Der volle Inhalt der QuelleShuming Chen, Dengfeng Wang, Ankang Zuo und Zhen Chen. „Exterior noise prediction of light duty truck based on near-field acoustic holography“. In 2010 2nd International Conference on Mechanical and Electrical Technology (ICMET). IEEE, 2010. http://dx.doi.org/10.1109/icmet.2010.5598345.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Acoustic field prediction"
Muhlestein, Michael, und Carl Hart. Geometric-acoustics analysis of singly scattered, nonlinearly evolving waves by circular cylinders. Engineer Research and Development Center (U.S.), Oktober 2020. http://dx.doi.org/10.21079/11681/38521.
Der volle Inhalt der QuelleLermusiaux, Pierre F. Quantifying, Predicting and Exploiting Environmental and Acoustic Fields and Uncertainties. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada531379.
Der volle Inhalt der QuelleLermusiaux, Pierre F. Quantifying, Predicting and Exploiting Environmental and Acoustic Fields and Uncertainties. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada542094.
Der volle Inhalt der Quelle