Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Acoustic Classification“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Acoustic Classification" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Acoustic Classification"
Zheng, Hong Bo, Pin Yan und Jing Chen. „The Discussion of Acoustic Seabed Sediment Classification Methods“. Applied Mechanics and Materials 226-228 (November 2012): 1811–16. http://dx.doi.org/10.4028/www.scientific.net/amm.226-228.1811.
Der volle Inhalt der QuelleMa, Ling, Ben Milner und Dan Smith. „Acoustic environment classification“. ACM Transactions on Speech and Language Processing 3, Nr. 2 (Juli 2006): 1–22. http://dx.doi.org/10.1145/1149290.1149292.
Der volle Inhalt der QuelleHichem, Hafdaoui, und Benatia Djamel. „Comparative between (LiNbO3) and (LiTaO3) in detecting acoustics microwaves using classification“. IAES International Journal of Artificial Intelligence (IJ-AI) 8, Nr. 1 (01.03.2019): 33. http://dx.doi.org/10.11591/ijai.v8.i1.pp33-43.
Der volle Inhalt der QuelleChoi. „Acoustic Target of Interest Tracking Algorithm Using Classification Feedback“. Journal Of The Acoustical Society Of Korea 33, Nr. 4 (2014): 225. http://dx.doi.org/10.7776/ask.2014.33.4.225.
Der volle Inhalt der QuelleMartin, Linda V., Timothy K. Stanton, Peter H. Wiebe und James F. Lynch. „Acoustic classification of zooplankton“. Journal of the Acoustical Society of America 98, Nr. 5 (November 1995): 2881. http://dx.doi.org/10.1121/1.413130.
Der volle Inhalt der QuelleWilson, Joshua D., und Nicholas C. Makris. „Ocean acoustic hurricane classification“. Journal of the Acoustical Society of America 119, Nr. 1 (Januar 2006): 168–81. http://dx.doi.org/10.1121/1.2130961.
Der volle Inhalt der QuelleMartin, L. „Acoustic classification of zooplankton“. ICES Journal of Marine Science 53, Nr. 2 (April 1996): 217–24. http://dx.doi.org/10.1006/jmsc.1996.0025.
Der volle Inhalt der QuelleNooralahiyan, A. Y., H. R. Kirby und D. McKeown. „Vehicle classification by acoustic signature“. Mathematical and Computer Modelling 27, Nr. 9-11 (Mai 1998): 205–14. http://dx.doi.org/10.1016/s0895-7177(98)00060-0.
Der volle Inhalt der QuelleLeonetti, Marc C., und Edward A. Hand. „Acoustic classification using fuzzy sets“. Journal of the Acoustical Society of America 92, Nr. 4 (Oktober 1992): 2418–19. http://dx.doi.org/10.1121/1.404644.
Der volle Inhalt der QuelleMalkin, R. A., und D. Alexandrou. „Acoustic classification of abyssopelagic animals“. IEEE Journal of Oceanic Engineering 18, Nr. 1 (1993): 63–72. http://dx.doi.org/10.1109/48.211495.
Der volle Inhalt der QuelleDissertationen zum Thema "Acoustic Classification"
Martin, Traykovski Linda V. (Linda Victoria) 1966. „Acoustic classification of zooplankton“. Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/49620.
Der volle Inhalt der QuelleTemko, Andriy. „Acoustic event detection and classification“. Doctoral thesis, Universitat Politècnica de Catalunya, 2007. http://hdl.handle.net/10803/6880.
Der volle Inhalt der Quellesortides de diversos sistemes de classificació. Els sistemes de classificació d'events acústics
desenvolupats s'han testejat també mitjançant la participació en unes quantes avaluacions d'àmbit
internacional, entre els anys 2004 i 2006. La segona principal contribució d'aquest treball de tesi consisteix en el desenvolupament de sistemes de detecció d'events acústics. El problema de la detecció és més complex, ja que inclou tant la classificació dels sons com la determinació dels intervals temporals on tenen lloc. Es desenvolupen dues versions del sistema i es proven amb els conjunts de dades de les dues campanyes d'avaluació internacional CLEAR que van tenir lloc els anys 2006 i 2007, fent-se servir dos tipus de bases de dades: dues bases d'events acústics aïllats, i una base d'enregistraments de seminaris interactius, les quals contenen un nombre relativament elevat d'ocurrències dels events acústics especificats. Els sistemes desenvolupats, que consisteixen en l'ús de classificadors basats en SVM que operen dins
d'una finestra lliscant més un post-processament, van ser els únics presentats a les avaluacions
esmentades que no es basaven en models de Markov ocults (Hidden Markov Models) i cada un d'ells
va obtenir resultats competitius en la corresponent avaluació. La detecció d'activitat oral és un altre dels objectius d'aquest treball de tesi, pel fet de ser un cas particular de detecció d'events acústics especialment important. Es desenvolupa una tècnica de millora de l'entrenament dels SVM per fer front a la necessitat de reducció de l'enorme conjunt de dades existents. El sistema resultant, basat en SVM, és testejat amb uns quants conjunts de dades de l'avaluació NIST RT (Rich Transcription), on mostra puntuacions millors que les del sistema basat en GMM, malgrat que aquest darrer va quedar entre els primers en l'avaluació NIST RT de 2006.
Per acabar, val la pena esmentar alguns resultats col·laterals d'aquest treball de tesi. Com que s'ha dut a terme en l'entorn del projecte europeu CHIL, l'autor ha estat responsable de l'organització de les avaluacions internacionals de classificació i detecció d'events acústics abans esmentades, liderant l'especificació de les classes d'events, les bases de dades, els protocols d'avaluació i, especialment, proposant i implementant les diverses mètriques utilitzades. A més a més, els sistemes de detecció
s'han implementat en la sala intel·ligent de la UPC, on funcionen en temps real a efectes de test i demostració.
The human activity that takes place in meeting-rooms or class-rooms is reflected in a rich variety of acoustic events, either produced by the human body or by objects handled by humans, so the determination of both the identity of sounds and their position in time may help to detect and describe that human activity.
Additionally, detection of sounds other than speech may be useful to enhance the robustness of speech technologies like automatic speech recognition. Automatic detection and classification of acoustic events is the objective of this thesis work. It aims at processing the acoustic signals collected by distant microphones in meeting-room or classroom environments to convert them into symbolic descriptions corresponding to a listener's perception of the different sound events that are present in the signals and their sources. First of all, the task of acoustic event classification is faced using Support Vector Machine (SVM) classifiers, which are motivated by the scarcity of training data. A confusion-matrix-based variable-feature-set clustering scheme is developed for the multiclass recognition problem, and tested on the gathered database. With it, a higher classification rate than the GMM-based technique is obtained, arriving to a large relative average error reduction with respect to the best result from the conventional binary tree scheme. Moreover, several ways to extend SVMs to sequence processing are compared, in an attempt to avoid the drawback of SVMs when dealing with audio data, i.e. their restriction to work with fixed-length vectors, observing that the dynamic time warping kernels work well for sounds that show a temporal structure. Furthermore, concepts and tools from the fuzzy theory are used to investigate, first, the importance of and degree of interaction among features, and second, ways to fuse the outputs of several classification systems. The developed AEC systems are tested also by participating in several international evaluations from 2004 to 2006, and the results
are reported. The second main contribution of this thesis work is the development of systems for detection of acoustic events. The detection problem is more complex since it includes both classification and determination of the time intervals where the sound takes place. Two system versions are developed and tested on the datasets of the two CLEAR international evaluation campaigns in 2006 and 2007. Two kinds of databases are used: two databases of isolated acoustic events, and a database of interactive seminars containing a significant number of acoustic events of interest. Our developed systems, which consist of SVM-based classification within a sliding window plus post-processing, were the only submissions not using HMMs, and each of them obtained competitive results in the corresponding evaluation. Speech activity detection was also pursued in this thesis since, in fact, it is a -especially important - particular case of acoustic event detection. An enhanced SVM training approach for the speech activity detection task is developed, mainly to cope with the problem of dataset reduction. The resulting SVM-based system is tested with several NIST Rich Transcription (RT) evaluation datasets, and it shows better scores than our GMM-based system, which ranked among the best systems in the RT06 evaluation. Finally, it is worth mentioning a few side outcomes from this thesis work. As it has been carried out in the framework of the CHIL EU project, the author has been responsible for the organization of the above mentioned international evaluations in acoustic event classification and detection, taking a leading role in the specification of acoustic event classes, databases, and evaluation protocols, and, especially, in the proposal and implementation of the various metrics that have been used. Moreover, the detection systems have been implemented in the UPC's smart-room and work in real time for purposes of testing and demonstration.
Brock, James L. „Acoustic classification using independent component analysis /“. Link to online version, 2006. https://ritdml.rit.edu/dspace/handle/1850/2067.
Der volle Inhalt der QuelleCaughey, David Arthur. „Seabed classification from acoustic echosounder returns“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ32738.pdf.
Der volle Inhalt der QuelleHassan, Ali. „On automatic emotion classification using acoustic features“. Thesis, University of Southampton, 2012. https://eprints.soton.ac.uk/340672/.
Der volle Inhalt der QuelleYagci, Tayfun. „Target Classification And Recognition Using Underwater Acoustic Signals“. Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606373/index.pdf.
Der volle Inhalt der Quellevisual&rdquo
target detection methods left the stage to the computerized acoustic signature detection and evaluation methods. Despite this, the research projects have not sufficiently addressed in the field of acoustic signature evaluation. This thesis work mainly investigates classification and recognition techniques with TRN / LOFAR signals, which are emitted from surface and subsurface platforms and proposes possible adaptations of existing methods that may give better results if they are used with these signals. Also a detailed comparison has been made about the experimental results with underwater acoustic signals.
Dunn, Shane C. „Acoustic classification of benthic habitats in Tampa Bay“. [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002297.
Der volle Inhalt der QuellePhilips, Scott M. „Perceptually-driven signal analysis for acoustic event classification /“. Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/5934.
Der volle Inhalt der QuelleWichert, Terry S., und Daniel Joseph Collins. „Feature based neural network acoustic transient signal classification“. Thesis, Monterey, California. Naval Postgraduate School, 1993. http://hdl.handle.net/10945/24169.
Der volle Inhalt der QuelleBissinger, Brett Bose N. K. Culver R. Lee. „Minimum hellinger distance classification of underwater acoustic signals“. [University Park, Pa.] : Pennsylvania State University, 2009. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-4677/index.html.
Der volle Inhalt der QuelleBücher zum Thema "Acoustic Classification"
Traykovski, Linda V. Martin. Acoustic classification of zooplankton. Woods Hole, Mass: Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Joint Program in Oceanography/Applied Ocean Science and Engineering, 1998.
Den vollen Inhalt der Quelle findenAcoustic emission, microseismic activity. Lisse: Balkema, 2003.
Den vollen Inhalt der Quelle findenWichert, Terry S. Feature based neural network acoustic transient signal classification. Monterey, Calif: Naval Postgraduate School, 1993.
Den vollen Inhalt der Quelle findenFlowers, Nicholas. Remote classification of sea bed material using backscattered acoustic signals. Birmingham: University of Birmingham, 1987.
Den vollen Inhalt der Quelle findenGabsdil, Malte. Automatic classification of speech recognition hypotheses using acoustic and pragmatic features. Saarbrücken: DFKI & Universität des Saarlandes, 2005.
Den vollen Inhalt der Quelle findenHealey, Anthony J. Sonar signal acquisition and processing for identification and classification of ship hull fouling. Monterey, Calif: Naval Postgraduate School, 1993.
Den vollen Inhalt der Quelle findenTang, Xiaoou. Dominant run-length method for image classification. [Woods Hole, Mass: Woods Hole Oceanographic Institution, 1997.
Den vollen Inhalt der Quelle findenTang, Xiaoou. Dominant run-length method for image classification. [Woods Hole, Mass: Woods Hole Oceanographic Institution, 1997.
Den vollen Inhalt der Quelle findenTonn, Joerg-Christian, und Douglas Kondziolka. Tumours of the cranial nerves. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199651870.003.0010.
Der volle Inhalt der QuelleBuchteile zum Thema "Acoustic Classification"
Hashimoto, Sho. „Classification of Vestibular Schwannoma (Acoustic Neuroma)“. In Acoustic Neuroma, 13–16. Tokyo: Springer Japan, 2003. http://dx.doi.org/10.1007/978-4-431-53942-1_3.
Der volle Inhalt der QuelleMoffat, David A. „Moffat Classification of Facial Nerve Function“. In Acoustic Neuroma, 73–78. Tokyo: Springer Japan, 2003. http://dx.doi.org/10.1007/978-4-431-53942-1_13.
Der volle Inhalt der QuelleSekiya, Tetsuji, und Shigeharu Suzuki. „A Classification System for Vestibular Schwannomas“. In Acoustic Neuroma, 45–48. Tokyo: Springer Japan, 2003. http://dx.doi.org/10.1007/978-4-431-53942-1_9.
Der volle Inhalt der QuelleMagnan, Jacques P. Y. „Surgical Classification and Predictive Factors in Acoustic Neuromas“. In Acoustic Neuroma, 39–43. Tokyo: Springer Japan, 2003. http://dx.doi.org/10.1007/978-4-431-53942-1_8.
Der volle Inhalt der QuelleMurakami, Shingo, Nobuhiro Watanabe und Sotaro Kamei. „New Classification of Postoperative Hearing Results Following Acoustic Neuroma Surgery“. In Acoustic Neuroma, 117–20. Tokyo: Springer Japan, 2003. http://dx.doi.org/10.1007/978-4-431-53942-1_20.
Der volle Inhalt der QuelleTemko, Andrey, Climent Nadeu, Dušan Macho, Robert Malkin, Christian Zieger und Maurizio Omologo. „Acoustic Event Detection and Classification“. In Computers in the Human Interaction Loop, 61–73. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84882-054-8_7.
Der volle Inhalt der QuellePatole, Rashmika, und Priti Rege. „Acoustic Classification of Bird Species“. In Lecture Notes in Electrical Engineering, 313–19. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8391-9_23.
Der volle Inhalt der QuelleLourens, J. G. „Classification of Ships Using Underwater Radiated Noise“. In Underwater Acoustic Data Processing, 591–96. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2289-1_66.
Der volle Inhalt der QuelleIshikawa, Kazuo, Zhiwei Cao, Yan Wang, Katsumi Monoo und Nobuyuki Yasui. „Classification of Tumor Size from the Point of View of Functional Preservation, Based Upon Our 53 Surgical Cases with Acoustic Neuroma“. In Acoustic Neuroma, 29–34. Tokyo: Springer Japan, 2003. http://dx.doi.org/10.1007/978-4-431-53942-1_6.
Der volle Inhalt der QuelleRen, Chunxia, und Shengchen Li. „Two-Stage Classification Learning for Open Set Acoustic Scene Classification“. In Proceedings of the 8th Conference on Sound and Music Technology, 124–33. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1649-5_11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Acoustic Classification"
Mayorga, Pedro, Julio Valdez, Vesna Zeljkovic, Christopher Druzgalski und Monceni A. Perez. „Cardiopulmonary acoustic events classification“. In 2016 International Conference on High Performance Computing & Simulation (HPCS). IEEE, 2016. http://dx.doi.org/10.1109/hpcsim.2016.7568381.
Der volle Inhalt der QuelleSaki, Fatemeh, Yinyi Guo, Cheng-Yu Hung, Lae-hoon Kim, Manyu Deshpande, Sunkuk Moon, Eunjeong Koh und Erik Visser. „Open-set Evolving Acoustic Scene Classification System“. In 4th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE 2019). New York University, 2019. http://dx.doi.org/10.33682/en2t-9m14.
Der volle Inhalt der QuelleRemaggi, Luca, Hansung Kim, Philip J. B. Jackson, Filippo Maria Fazi und Adrian Hilton. „Acoustic Reflector Localization and Classification“. In ICASSP 2018 - 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018. http://dx.doi.org/10.1109/icassp.2018.8462146.
Der volle Inhalt der QuelleFelipe, Gustavo Zanoni, Yandre Maldonado, Gomes da Costa und Lucas Georges Helal. „Acoustic scene classification using spectrograms“. In 2017 36th International Conference of the Chilean Computer Science Society (SCCC). IEEE, 2017. http://dx.doi.org/10.1109/sccc.2017.8405119.
Der volle Inhalt der QuelleSampath, D. Y. K., und G. D. S. P. Wimalarathne. „Obstacle classification through acoustic echolocation“. In 2015 International Conference on Estimation, Detection and Information Fusion (ICEDIF). IEEE, 2015. http://dx.doi.org/10.1109/icedif.2015.7280147.
Der volle Inhalt der QuelleAu-Yeung, Justin, Mahesh K. Banavar und Vanitha M. „Room Classification using Acoustic Signals“. In 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE). IEEE, 2020. http://dx.doi.org/10.1109/ic-etite47903.2020.91.
Der volle Inhalt der QuelleNurzynski, Jacek. „New Acoustic Classification Scheme for Residential Buildings in Poland“. In 2018 Joint Conference - Acoustics. IEEE, 2018. http://dx.doi.org/10.1109/acoustics.2018.8502338.
Der volle Inhalt der QuelleWilkinghoff, Kevin, und Frank Kurth. „Open-Set Acoustic Scene Classification with Deep Convolutional Autoencoders“. In 4th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE 2019). New York University, 2019. http://dx.doi.org/10.33682/340j-wd27.
Der volle Inhalt der QuelleHuang, Jonathan, Hong Lu, Paulo Lopez Meyer, Hector Cordourier und Juan Del Hoyo Ontiveros. „Acoustic Scene Classification Using Deep Learning-based Ensemble Averaging“. In 4th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE 2019). New York University, 2019. http://dx.doi.org/10.33682/8rd2-g787.
Der volle Inhalt der QuelleKoutini, Khaled, Hamid Eghbal-zadeh und Gerhard Widmer. „Receptive-Field-Regularized CNN Variants for Acoustic Scene Classification“. In 4th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE 2019). New York University, 2019. http://dx.doi.org/10.33682/cjd9-kc43.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Acoustic Classification"
Thammakhoune, Ned B., und Stephen W. Lang. Long Range Acoustic Classification. Fort Belvoir, VA: Defense Technical Information Center, Januar 1999. http://dx.doi.org/10.21236/ada393792.
Der volle Inhalt der QuelleEom, K., M. Wellman, N. Srour, D. Hillis und R. Chellappa. Acoustic Target Classification Using Multiscale Methods. Fort Belvoir, VA: Defense Technical Information Center, Januar 1998. http://dx.doi.org/10.21236/ada358579.
Der volle Inhalt der QuelleStanton, Timothy K., und Peter H. Wiebe. Acoustic Scattering Classification of Zooplankton and Microstructure. Fort Belvoir, VA: Defense Technical Information Center, September 2000. http://dx.doi.org/10.21236/ada609882.
Der volle Inhalt der QuelleStanton, Timothy K., und Peter H. Wiebe. Acoustic Scattering Classification of Zooplankton and Microstructure. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2003. http://dx.doi.org/10.21236/ada418128.
Der volle Inhalt der QuelleStanton, Timothy K., und Dezhang Chu. Acoustic Resonance Classification of Swimbladder-Bearing Fish. Fort Belvoir, VA: Defense Technical Information Center, Juli 2010. http://dx.doi.org/10.21236/ada525356.
Der volle Inhalt der QuelleStanton, Timothy K., Dezhang Chu und J. M. Jech. Acoustic Resonance Classification of Swimbladder-Bearing Fish. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada573418.
Der volle Inhalt der QuelleStanton, Timothy K., und Peter H. Wiebe. Acoustic Scattering Classification of Zooplankton and Microstructure. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada628843.
Der volle Inhalt der QuelleStanton, Timothy K., und Peter H. Wiebe. Acoustic Scattering Classification of Zooplankton and Microstructure. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada626242.
Der volle Inhalt der QuelleGoldman, Geoffrey H., Ronald M. Holben und Guy L. Williams. Performance Metrics for Acoustic Classification of Weapons Fire. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada570174.
Der volle Inhalt der QuelleMcLaughlin, Jack, Scott Philips und James Pitton. Perceptually-Driven Signal Analysis for Acoustic Event Classification. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada476810.
Der volle Inhalt der Quelle