Auswahl der wissenschaftlichen Literatur zum Thema „Acid soils South Australia“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Acid soils South Australia" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Acid soils South Australia":

1

Simpson, Stuart L., Rob W. Fitzpatrick, Paul Shand, Brad M. Angel, David A. Spadaro und Luke Mosley. „Climate-driven mobilisation of acid and metals from acid sulfate soils“. Marine and Freshwater Research 61, Nr. 1 (2010): 129. http://dx.doi.org/10.1071/mf09066.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The recent drought in south-eastern Australia has exposed to air, large areas of acid sulfate soils within the River Murray system. Oxidation of these soils has the potential to release acidity, nutrients and metals. The present study investigated the mobilisation of these substances following the rewetting of dried soils with River Murray water. Trace metal concentrations were at background levels in most soils. During 24-h mobilisation tests, the water pH was effectively buffered to the pH of the soil. The release of nutrients was low. Metal release was rapid and the dissolved concentrations of many metals exceeded the Australian water quality guidelines (WQGs) in most tests. The concentrations of dissolved Al, Cu and Zn were often greater than 100× the WQGs and strong relationships existed between dissolved metal release and soil pH. Attenuation of dissolved metal concentrations through co-precipitation and adsorption to Al and Fe precipitates was an important process during mixing of acidic, metal-rich waters with River Murray water. The study demonstrated that the rewetting of dried acid sulfate soils may release significant quantities of metals and a high level of land and water management is required to counter the effects of such climate change events.
2

McBeath, T. M., R. D. Armstrong, E. Lombi, M. J. McLaughlin und R. E. Holloway. „Responsiveness of wheat (Triticum aestivum) to liquid and granular phosphorus fertilisers in southern Australian soils“. Soil Research 43, Nr. 2 (2005): 203. http://dx.doi.org/10.1071/sr04066.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Recent field trials on alkaline soils in southern Australia showed significant grain yield responses to liquid compared with traditional granular forms of P fertiliser. However the advantages of liquid over granular P forms of fertiliser has not been consistent on all soil types. In order to better predict the soil types on which liquid P fertilisers are likely to have potential, a glasshouse trial was conducted to compare the responsiveness of wheat to both liquid and granular forms of P on a wide range of Australian soils. A granular P fertiliser (triple superphosphate) and 2 liquid fertilisers (phosphoric acid and ammonium polyphosphate) were compared at a rate equivalent to 12 kg P/ha in 29 soils representing many of the soil types used for grain production in Victoria and South Australia. Wheat biomass was enhanced by P application in 86% of the soils tested. In 62% of the P-responsive soils, wheat dry matter was significantly greater when liquid P fertilisers were used compared with the granular form. Chemical analysis of the soils tested showed that the better performance of liquid P forms was not correlated to total P concentration in soil, P buffer capacity, or P availability as measured by Colwell-P. However, there was a significant positive relationship between calcium carbonate (CaCO3) content of soil and wheat responsiveness to liquid P fertiliser.
3

Krishnamurti, G. S. R., und R. Naidu. „Speciation and phytoavailability of cadmium in selected surface soils of South Australia“. Soil Research 38, Nr. 5 (2000): 991. http://dx.doi.org/10.1071/sr99129.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
A modified sequential extraction scheme was developed for partitioning the particulate-bound cadmium (Cd) into 9 fractions: exchangeable, carbonate-bound/specifically adsorbed, metal–fulvic acid-complex-bound, metal–humic acid-complex-bound, easily reducible metal oxide-bound, organic-bound, amorphous mineral colloid-bound, crystalline Fe oxide-bound, and detrital (bound to mineral lattices). Results on 11 surface soils showed that Cd in these soils was predominantly present in detrital form, bound to the mineral lattices, accounting for 15.8–61.9%, with an average of 33.4%, of the total Cd in the soils. The average relative abundance of Cd bound to the different particulate forms in the soils is in the order: detrital (0.077 mg/kg) > specifically adsorbed/carbonate-bound (0.066 mg/kg) > organic-bound (0.033 mg/kg) > metal–fulvic acid-complex-bound (0.031 mg/kg) > easily reducible metal oxide-bound (0.019 mg/kg) > exchangeable (0.013 mg/kg) > metal–humic acid-complex-bound (0.011 mg/kg) > crystalline Fe oxide-bound (0.001 mg/kg) =amorphous mineral colloid-bound (0.001 mg/kg). The phytoavailable Cd content was determined as Cd concentration in the shoot and leaf of durum wheat plants grown on the soils in a greenhouse study. Statistical treatment of the data showed that the exchangeable Cd (r = 0.735, P = 0.01) and the metal–fulvic acid-complex-bound Cd (r = 0.824, P = 0.002) correlated significantly with the plant-available Cd, compared with other species. The exchangeable and fulvic acid fraction of the metal–organic-complex-bound Cd contents, together, could explain 91.5% of the variation in plant-available Cd, determined as Cd concentration in leaf and stem of the durum wheat plants (r = 0.956, P = 0.0001). The significance of metal–fulvic acid complexes on Cd phytoavailability has not been reported so far and needs in-depth research in explaining the toxicity and food chain contamination of Cd in the environment.
4

Bolan, NS, RE White und MJ Hedley. „A review of the use of phosphate rocks as fertilizers for direct application in Australia and New Zealand.“ Australian Journal of Experimental Agriculture 30, Nr. 2 (1990): 297. http://dx.doi.org/10.1071/ea9900297.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Field trials in New Zealand have shown that reactive phosphate rocks (RPRs) can be as effective as soluble P fertilisers, per kg of P applied, on permanent pastures that have a soil pH<6.0 (in water) and a mean annual rainfall >800 mm. Whereas RPRs such as North Carolina, Sechura, Gafsa and Chatham Rise have been evaluated on permanent pastures in New Zealand, most Australian field trials have examined unreactive PRs such as Christmas Island A and C grade, Nauru and Duchess, using annual plant species. Only in recent experiments has an RPR, North Carolina, been examined. Except on the highly leached sands in southern and south-western Australia, both reactive and unreactive PRs have shown a low effectiveness relative to superphosphate. In addition to chemical reactivity, other factors may contribute to the difference in the observed agronomic effectiveness of PRs in Australia and New Zealand. Generally, PRs have been evaluated on soils of lower pH, higher pH buffering capacity (as measured by titratable acidity) and higher P status in New Zealand than in Australia. Rainfall is more evenly distributed throughout the year on New Zealand pastures than in Australia where the soil surface dries out between rainfall events. Dry conditions reduce the rate at which soil acid diffuses to a PR granule and dissolution products diffuse away. Even when pH and soil moisture are favourable, the release of P from PR is slow and more suited to permanent pasture (i.e. the conditions usually used to evaluate PRs in New Zealand) than to the annual pastures or crops used in most Australian trials. Based on the criteria of soil pH<6.0 and mean annual rainfall >800 mm, it is estimated that the potentially suitable area for RPRs on pasture in New Zealand is about 8 million ha. Extending this analysis to Australia, but excluding the seasonal rainfall areas of northern and south-western Australia, the potentially suitable area is about 13 million ha. In New Zealand, many of the soils in the North and South Islands satisfy both the pH and rainfall criteria. However, suitable areas in Australia are confined mainly to the coastal and tableland areas of New South Wales and eastern Victoria, and within these areas the actual effectiveness of RPR will depend markedly on soil management and the distribution of annual rainfall. Further research on RPR use should be focused on these areas.
5

Singh, Balwant, I. O. A. Odeh und A. B. McBratney. „Acid buffering capacity and potential acidification of cotton soils in northern New South Wales“. Soil Research 41, Nr. 5 (2003): 875. http://dx.doi.org/10.1071/sr02036.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Soil acidity has been of major concern in Australia since European settlement. Acidification processes have been accelerated due to agricultural activities such as N fertiliser application and leguminous N-fixation in farm rotations. In this paper, we measured the acid buffering capacity (pHBC) of Vertosols, soils used predominantly for growing cotton in northern New South Wales. The pHBC values were used to calculate decrease in soil pH assuming net acid input due to agricultural practices. We combined the acidification results with geostatistics to spatially simulate the decline in soil pH of surface soils over time. The results indicate that it would take 10–417 years for soil pH to decrease by 1 unit on an assumed acid input of 5�kmol�H+/ha.year. Soil pH will drop by 1 unit within 100 years for 90% of the soils and within 15 years for 10% of the soils. This reflects the variability of the pHBC for the studied soils. In 50 years from present, most of the eastern and north-western parts of the study region may become highly acidic with soil pH declining to 5.5. There may be a potential threat to sustainable agriculture from acidification in the region, although more work needs to be done to corroborate the counter-effects of water fluxes and carbonate dissolution. Sensitivity analysis indicates that even at low levels of acid input, some areas in the study region may experience significant decline in soil pH in the surface layer.
6

Doolette, Ashlea L., Ronald J. Smernik und Timothy I. McLaren. „The composition of organic phosphorus in soils of the Snowy Mountains region of south-eastern Australia“. Soil Research 55, Nr. 1 (2017): 10. http://dx.doi.org/10.1071/sr16058.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Few studies have considered the influence of climate on organic phosphorus (P) speciation in soils. We used sodium hydroxide–ethylenediaminetetra-acetic acid (NaOH–EDTA) soil extractions and solution 31P nuclear magnetic resonance spectroscopy to investigate the soil P composition of five alpine and sub-alpine soils. The aim was to compare the P speciation of this set of soils with those of soils typically reported in the literature from other cold and wet locations, as well as those of other Australian soils from warmer and drier environments. For all alpine and sub-alpine soils, the majority of P detected was in an organic form (54–66% of total NaOH–EDTA extractable P). Phosphomonoesters comprised the largest pool of extractable organic P (83–100%) with prominent peaks assigned to myo- and scyllo-inositol hexakisphosphate (IP6), although trace amounts of the neo- and d-chiro-IP6 stereoisomers were also present. Phosphonates were identified in the soils from the coldest and wettest locations; α- and β-glycerophosphate and mononucleotides were minor components of organic P in all soils. The composition of organic P in these soils contrasts with that reported previously for Australian soils from warm, dry environments where inositol phosphate (IP6) peaks were less dominant or absent and humic-P and α- and β-glycerophosphate were proportionally larger components of organic P. Instead, the soil organic P composition exhibited similarities to soils from other cold, wet environments. This provides preliminary evidence that climate is a key driver in the variation of organic P speciation in soils.
7

Gerritse, RG. „Simulation of phosphate leaching in acid sandy soils“. Soil Research 27, Nr. 1 (1989): 55. http://dx.doi.org/10.1071/sr9890055.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Prediction of changes in amounts of phosphate leaching from soils with changes in management practices requires a detailed knowledge of the adsorption and desorption characteristics of the soils for phosphate. Non-equilibrium soil distribution of inorganic phosphate was determined at various rates of flow from time courses of phosphate in the leachates of small columns of sandy soils sampled from the Swan Coastal Plain in south-west Western Australia. Equilibrium distribution isotherms were estimated by extrapolating to zero rate of flow. Time courses of phosphate concentrations in the leachates were also calculated with a numerical compartmental simulation model. First-order transport rate equations with time-dependent rate coefficients adequately described the experimental time courses of the leachate concentrations. Kinetic parameters were based on a consideration of the physical/chemical distribution of ortho-phosphate only. The error due to this approach was evaluated by measuring the (biochemical) fixation of phosphate in soil organic matter.
8

Wong, M. T. F., R. W. Bell und K. Frost. „Mapping boron deficiency risk in soils of south-west Western Australia using a weight of evidence model“. Soil Research 43, Nr. 7 (2005): 811. http://dx.doi.org/10.1071/sr05022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The aim of this work was to develop a risk map for boron (B) deficiency in the grain cropping regions of Western Australia (WA), whilst avoiding the high costs associated with direct B measurements for an area as vast as the south-west of WA. The study firstly determined relationships between 0.01 m CaCl2-extractable soil B levels and readily available data on soil properties and parent materials for Reference Soils of south-west Australia and secondly assembled direct evidence of B deficiency risk from surveys of farmers’ crops and soils and from glasshouse experiments. Across 73 Reference Soils, there was a positive relationship between 0.01 m CaCl2-extractable soil B levels and clay (r 2 = 0.50) and pH (r 2 = 0.43) in the surface horizon. Soils containing <0.5 mg B/kg generally had <5% clay and pH CaCl2 <5.5. Plant and soil analysis surveys in farmers’ fields revealed 10–20% of fields had B levels below tentative critical levels. In a glasshouse experiment, B response in oilseed rape was obtained in 4 sandy acid soils, all developed on sandstone parent materials. From this prior evidence of B deficiency, spatial data layers for surface soil pH, subsurface pH, surface clay level, and geology in south-western Australia were weighted and combined using the Dempster-Shafer weight of evidence model to map B-deficiency risk. The weightings of evidence layers were revised to increase the correspondence between predicted areas of high risk and field areas with measured low B or B deficiency from a validation dataset. The model helps overcome the high cost associated with direct B measurements for risk mapping. A similar approach may have value for mapping risk of other deficiencies of relevance to agriculture.
9

Li, G. D., G. M. Lodge, G. A. Moore, A. D. Craig, B. S. Dear, S. P. Boschma, T. O. Albertsen et al. „Evaluation of perennial pasture legumes and herbs to identify species with high herbage production and persistence in mixed farming zones in southern Australia“. Australian Journal of Experimental Agriculture 48, Nr. 4 (2008): 449. http://dx.doi.org/10.1071/ea07108.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Ninety-one perennial legumes and herbs (entries) from 47 species in 21 genera were evaluated at sites in New South Wales, South Australia and Western Australia over 3 years from 2002 to 2005 to identify plants with superior herbage production, persistence and the potential to reduce ground water recharge. Evaluation was undertaken in three nurseries (general, waterlogged soil and acid soil). Medicago sativa L. subsp. sativa (lucerne) cv. Sceptre was the best performing species across all sites. In the general and acid soil nurseries, Cichorium intybus L. (chicory) cv. Grasslands Puna was the only species comparable with Sceptre lucerne in terms of persistence and herbage production. Trifolium fragiferum L. cv. Palestine and Lotus corniculatus L. SA833 were the best performing species on heavy clay soils prone to waterlogging. Three Dorycnium hirsutum (L.) Ser. accessions persisted well on acid soils, but were slow to establish. Short-lived perennial forage legumes, such as Onobrychis viciifolia Scop. cv. Othello, and three Hedysarum coronarium L. entries, including cv. Grasslands Aokou, had high herbage production in the first 2 years and may be suitable for short-term pastures in phased pasture-crop farming systems. T. uniflorum L. and M. sativa subsp. caerulea SA38052 were highly persistent and could play a role as companion species in mixtures or ground cover species for undulating landscapes. Cullen australasicum (Schltdl.) G.W. Grimes SA4966 and Lotononis bainesii Baker cv. Miles had poor establishment, but were persistent. Chicory, T. fragiferum and L. corniculatus were identified as species, other than lucerne, with the most immediate potential for further selection to increase the diversity of perennial legumes and herbs adapted to southern Australian environments.
10

Walker, PH. „Contributions to the understanding of soil and landscape relationships“. Soil Research 27, Nr. 4 (1989): 589. http://dx.doi.org/10.1071/sr9890589.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
A new approach to pedology was developed in Australia in the 1950's. It was based on geomorphic and stratigraphic principles and recognized the cyclic or episodic nature of soil and landscape development. The research reviewed here represents a contribution to that approach and further developments of it in fluvial erosional and depositional landscapes of south-eastern Australia and in glaciated landscapes of midwestern U.S.A. This research features detailed studies of hillslope layers and their relationship to alluvial valley fills; soil chronosequences on flights of alluvial terraces; the stratigraphy of coastal flood plains and the development of acid sulfate soils; dust accession in soils and the resulting problems of interpreting pedogenesis; the erosional-depositional origin of soils in enclosed drainage basins on glacial deposits of Iowa, U.S.A.; the development of a raintower-tilting flume facility and its use in elucidating the processes of soil erosion by flowing water.

Dissertationen zum Thema "Acid soils South Australia":

1

Farhoodi, Alireza. „Lime requirement in acidifying cropping soils in South Australia“. Title page, table of contents and abstract only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phf223.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
"August 2002" Bibliography: leaves 230-254. Field sites and soils from cropping studies in the mid-north of South Australia were used to address questions of soil responses to lime and the influence of acidifying inputs. The study showed that LMWOAs associated with different stubbles can help to ameliorate toxicity through complexation with A1.
2

Shi, Xianzhong. „Hyperspectral sensing of acid sulphate soils and their environmental impacts in South Yunderup, Western Australia“. Thesis, Curtin University, 2014. http://hdl.handle.net/20.500.11937/1820.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Several sources of hyperspectral data were used to map the occurrence and spread of acid sulfate soils (AAS). Surface evolution of mineralogy during controlled oxidation of sulphidic material showed the formation of secondary iron minerals linked to soil pH ranges. Spectral characterization, image classification and PLSR of hyperspectral data successfully mapped the occurrence of surface and subsurface acid conditions and related toxicity by linking mineralogy to pH.
3

Harris, Mark Anglin. „Some organic amendments for heavy metal toxicity, acidity and soil structure in acid-sulphate mine tailings /“. Title page, contents and abstract only, 2000. http://web4.library.adelaide.edu.au/theses/09PH/09phh3148.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Fotovat, Amir. „Chemistry of indigenous Zn and Cu in the soil-water system : alkaline sodic and acidic soils“. Title page, contents and abstract only, 1997. http://web4.library.adelaide.edu.au/theses/09PH/09phf761.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Copies of author's previously published articles inserted. Bibliography: leaves 195-230. In this study the soil aqueous phase chemistry of Zn and Cu in alkaline sodic soils are investigated. The chemistry of trace metal ions at indigenous concentrations in alkaline sodic soils are reported. Metal ions at low concentrations are measured by the graphite furnace atomic absorption spectrometry (GFAAS) technique.
5

Chen, Juan. „Mobility and environmental fate of norflurazon and haloxyfop-R methyl ester in six viticultural soils of South Australia /“. Title page, contents and abstract only, 1999. http://web4.library.adelaide.edu.au/theses/09AEVM/09aevmc518.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Odeh, Inakwu Ominyi Akots. „Soil pattern recognition in a South Australian subcatchment /“. Title page, contents and abstract only, 1990. http://web4.library.adelaide.edu.au/theses/09PH/09pho23.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Lotfollahi, Mohammad. „The effect of subsoil mineral nitrogen on grain protein concentration of wheat“. Title page, table of contents and summary only, 1996. http://web4.library.adelaide.edu.au/theses/09PH/09phl882.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Copy of author's previously published work inserted. Bibliography: leaves 147-189. This project examines the uptake of mineral N from the subsoil after anthesis and its effect on grain protein concentration (GPC) of wheat. The overall objective is to examine the importance of subsoil mineral N and to investigate the ability of wheat to take up N from the subsoil late in the season under different conditions of N supply and soil water availability. Greenhouse experiments investigate the importance of subsoil mineral N availability on GPC of wheat and the factors that contribute to the effective utilisation of N. The recovery of N from subsoil, the effect of split N application on GPC and short term N uptake by the wheat at different rooting densities are also studied.
8

Mustafa, Akhmad Biological Earth &amp Environmental Sciences Faculty of Science UNSW. „Improving acid sulfate soils for brackish water aquaculture ponds in South Sulawesi, Indonesia“. Awarded by:University of New South Wales. Biological, Earth & Environmental Sciences, 2007. http://handle.unsw.edu.au/1959.4/40619.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Brackish water aquaculture is one of the largest coastal industries in Indonesia. This farming system involves the construction of ponds m coastal sediments. Many ponds in Indonesia have been abandoned due to past development of ponds in acid 8ulfate soils (ASS); these soils produce sulfuric acid through the oxidation of pyrite du ring and after the sediments have been excavated. The soils also contain elevated concentrations of metal such as iron and aluminium which are harmful to farmed fish and shrimp. Acidification of pond soil causes recurrent fish and shrimp mortalities, poor growth rate in fish and shrimp, soft shell syndrome in shrimp and low plankton densities, Pond maintenance costs in ASS are also significantly higher than non-ASS ponds. There are over 6.7 million ha of ASS In Indonesia of which 35% has been developed for brackish water aquaculture. This study developed and trialled methods of soil remediation to restore abandoned ASS-affected ponds. The main objective was to develop methods at remediation that were scientifically sound but also practical and inexpensive for farmers. The research involved characterising, in detail, the chemical and physical properties of ponds soil followed by laboratory-based experiments to improve soil properties. The results of laboratory trials were the basis for large-scale field experiments to test soil remediation strategies. The study showed that pond bottoms could be improved by forced oxidation, flooding and water exchange followed by Iiming and fertilising. Up to 500% increases in productivity were achieved by this method and soils conditions Improved significantly. A further twofold productivity increase was achieved by an integrated liming method in which lime is added to rebuilt or new dykes in layers. A juvenile shrimp production system was developed for ponds that were too severely degraded or costly to remediate. The research developed methods of preventing metal toxicity in Juvenile shrimp. The study showed that aquaculture ponds built in ASS could be remediated and returned to viable production systems. Importantly, the study has developed a more detailed understanding of chemical properties In ASS-affected ponds.
9

Bagheri, Kazemabad Abdolreza. „Boron tolerance in grain legumes with particular reference to the genetics of boron tolerance in peas“. Title page, summary and contents only, 1994. http://web4.library.adelaide.edu.au/theses/09PH/09phb144.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Shrestha, Hari Ram. „Post-fire recovery of carbon and nitrogen in sub-alpine soils of South-eastern Australia /“. Connect to thesis, 2009. http://repository.unimelb.edu.au/10187/6963.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The forests of south-eastern Australia, having evolved in one of the most fire-prone environments in the world, are characterized by many adaptations to recovery following burning. Thus forest ecosystems are characterized by rapid regenerative capacity, from either seed or re-sprouting, and mechanisms to recover nutrients volatilized, including an abundance of N2 fixing plants in natural assemblages. Soil physical, chemical and biological properties are directly altered during fire due to heating and oxidation of soil organic matter, and after fire due to changes in heat, light and moisture inputs. In natural ecosystems, carbon (C) and nitrogen (N) lost from soil due to fires are recovered through photosynthesis and biological N2 fixation (BNF) by regenerating vegetation and soil microbes.
This study investigated post-fire recovery of soil C and N in four structurally different sub-alpine plant communities (grassland, heathland, Snowgum and Alpine ash) of south-eastern Australia which were extensively burnt by landscape-scale fires in 2003. The amount and isotopic concentration of C and N in soils to a depth of 20 cm from Alpine ash forest were assessed five years after fire in 2008 and results were integrated with measurements taken immediately prior to burning (2002) and annually afterwards.
Because the historical data set, comprised of three soil samplings over the years 2002 to 2005, consisted of soil total C and N values which were determined as an adjunct to 13C and 15N isotopic studies, it was necessary to establish the accuracy of these IRMS-derived measurements prior to further analysis of the dataset. Two well-established and robust methods for determining soil C (total C by LECO and oxidizable C by the Walkley-Black method) were compared with the IRMS total C measurement in a one-off sampling to establish equivalence prior to assembling a time-course change in soil C from immediately pre-fire to five years post-fire. The LECO and IRMS dry combustion measurements were essentially the same (r2 >0.99), while soil oxidizable C recovery by the Walkley-Black method (wet digestion) was 68% compared to the LECO/IRMS measurements of total C. Thus the total C measurement derived from the much smaller sample size (approximately 15 mg) combusted during IRMS are equivalent to LECO measurement which require about 150 mg of sample.
Both total C and N in the soil of Alpine ash forests were significantly higher than soils from Snowgum, heathland and grassland communities. The ratio of soil NH4+ to NO3- concentration was greater for Alpine ash forest and Snow gum woodland but both N-fractions were similar for heathland and grassland soils. The abundance of soil 15N and 13C was significantly depleted in Alpine ash but both isotopes were enriched in the heathland compared to the other ecosystems. Abundance of both 15N and 13C increased with soil depth.
The natural abundance of 15N and 13C in the foliage of a subset of non-N2 fixing and N2 fixing plants was measured as a guide to estimate BNF inputs. Foliage N concentration was significantly greater in N2 fixers than non-N2 fixers while C content and 13C abundance were similar in both functional groups. Abundance of 15N was depleted in the N2 fixing species but was not significantly different from the non-N2 fixers to confidently calculate BNF inputs based on the 15N abundance in the leaves.
The total C pool in soil (to 20 cm depth) had not yet returned to the pre-fire levels in 2008 and it was estimated that such levels of C would be reached in another 6-7 years (about 12 years after the fire). The C and N of soil organic matter were significantly enriched in 15N and 13C isotopes after fire and had not returned to the pre-fire levels five years after the fire. It is concluded that the soil organic N pool can recover faster than the total C pool after the fire in the Alpine ash forests.

Bücher zum Thema "Acid soils South Australia":

1

McArthur, W. M. Reference soils of south-western Australia. Perth, W.A: Dept. of Agriculture, Western Australia on behalf of the Australian Society of Soil Science, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

International Symposium on Plant-Soil Interactions at Low pH (3rd 1993 Brisbane, Qld.). Plant-soil interactions at low pH: Principles and management : proceedings of the Third International Symposium on Plant-Soil Interactions at Low pH, Brisbane, Queensland, Australia, 12-16 September 1993. Dordrecht: Kluwer Academic, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Malcolm, C. V. Screening schrubs for establishment and survival on salt-affected soils in south-western Australia. Perth: Department of Agriculture, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Deep Drainage Taskforce (W.A.). Deep drainage in south-west Western Australia: Making it work, not proving it wrong : report and recommendations to the Honourable Monty House MLA, Minister for Primary Industry and Fisheries. South Perth, WA: Agriculture W.A. for the Taskforce, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

International Symposium on "Manganese in Soils and Plants" (1988 Waite Agricultural Research Institute). Manganese in soils and plants: Proceedings of the International Symposium on "Manganese in Soils and Plants" held at the Waite Agricultural Research Institute, the University of Adelaide, Glen Osmond, South Australia, August 22-26, 1988, as an Australian Bicentennial event. Dordrecht: Kluwer Academic, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Soils of south-western Australia. [East Perth, W.A.]: Ministry of Education, Western Australia, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

I, White, und Water Research Foundation of Australia., Hrsg. Reducing acidic discharges from coastal wetlands in eastern Australia. Canberra: Water Research Foundation of Australia, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

F, White P., Hrsg. Long term effects of direct drilling and conventional cultivation on the distribution of nutrients and organic C in soils of South Western Australia. South Perth, W.A: Division of Plant Industries, Western Australian Dept. of Agriculture, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

White, Robert E. Soils for Fine Wines. Oxford University Press, 2003. http://dx.doi.org/10.1093/oso/9780195141023.001.0001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In recent years, viticulture has seen phenomenal growth, particularly in such countries as Australia, New Zealand, the United States, Chile, and South Africa. The surge in production of quality wines in these countries has been built largely on the practice of good enology and investment in high technology in the winery, enabling vintners to produce consistently good, even fine wines. Yet less attention has been paid to the influence of vineyard conditions on wines and their distinctiveness-an influence that is embodied in the French concept of terroir. An essential component of terroir is soil and the interaction between it, local climate, vineyard practices, and grape variety on the quality of grapes and distinctiveness of their flavor. This book considers that component, providing basic information on soil properties and behavior in the context of site selection for new vineyards and on the demands placed on soils for grape growth and production of wines. Soils for Fine Wines will be of interest to professors and upper-level students in enology, viticulture, soils and agronomy as well as wine enthusiasts and professionals in the wine industry.
10

Hannam, R. J., N. C. Uren und R. D. Graham. Manganese in Soils and Plants: Proceedings of the International Symposium on 'Manganese in Soils and Plants' Held at the Waite Agricultural Research Institute, the University of Adelaide, Glen Osmond, South Australia, August 22-26, 1988 As an Australian Bicentennial Event. Springer London, Limited, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Acid soils South Australia":

1

Milnes, A. R., M. J. Wright und M. Thiry. „Silica Accumulations in Saprolites and Soils in South Australia“. In SSSA Special Publications, 121–49. Madison, WI, USA: Soil Science Society of America, 2015. http://dx.doi.org/10.2136/sssaspecpub26.c7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ayers, G. P., H. Malfroy, R. W. Gillett, D. Higgins, P. W. Selleck und J. C. Marshall. „Deposition of Acidic Species at a Rural Location in New South Wales, Australia“. In Acid Reign ’95?, 2089–94. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-007-0864-8_36.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wooldridge, J., W. A. Kotzé und M. E. Joubert. „Acid soil management in orchard soils of the South Western Cape Province, South Africa“. In Plant-Soil Interactions at Low pH: Principles and Management, 797–802. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0221-6_128.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Leys, J. F. „The threshold friction velocities and soil flux rates of selected soils in south-west New South Wales, Australia“. In Aeolian Grain Transport, 103–12. Vienna: Springer Vienna, 1991. http://dx.doi.org/10.1007/978-3-7091-6703-8_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wu, Qitang, Zebin Wei, Xinxian Long und Chengai Jiang. „Advances in Remediation of Acid Agricultural Soils Contaminated by Heavy Metals in South China“. In Twenty Years of Research and Development on Soil Pollution and Remediation in China, 389–97. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6029-8_21.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Slattery, J. F., W. J. Slattery und B. M. Carmody. „Influence of Soil Chemical Characteristics on Medic Rhizobia in the Alkaline Soils of South Eastern Australia“. In Highlights of Nitrogen Fixation Research, 243–49. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4795-2_49.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Okada, Kensuke, und Albert J. Fischer. „Adaptation Mechanisms of Upland Rice Genotypes to Highly Weathered Acid Soils of South American Savannas“. In Plant Nutrient Acquisition, 185–200. Tokyo: Springer Japan, 2001. http://dx.doi.org/10.1007/978-4-431-66902-9_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Fisher, John A., und Brendan J. Scott. „Are we justified in breeding wheat for tolerance to acid soils in southern New South Wales?“ In Genetic Aspects of Plant Mineral Nutrition, 1–8. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1650-3_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Naidu, R., R. J. Haynes, J. S. Gawandar, R. J. Morrison und R. W. Fitzpatrick. „Chemical and mineralogical properties and soil solution composition of acid soils from the South Pacific Islands“. In Plant-Soil Interactions at Low pH, 43–53. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3438-5_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Baker, G. H., V. J. Barrett, P. J. Carter, J. C. Buckerfield, P. M. L. Williams und G. P. Kilpin. „Abundance of earthworms in soils used for cereal production in south-eastern Australia and their role in reducing soil acidity“. In Plant-Soil Interactions at Low pH: Principles and Management, 213–18. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0221-6_30.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Acid soils South Australia":

1

Shi, Xianzhong, Mehrooz Aspandiar und Ian C. Lau. „Assessment of acid sulfate soil using hyperspectral data in South Yunderup, Western Australia“. In IGARSS 2013 - 2013 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2013. http://dx.doi.org/10.1109/igarss.2013.6723790.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Smith-Briggs, Jane, Dave Wells, Tommy Green, Andy Baker, Martin Kelly und Richard Cummings. „The Australian National Radioactive Waste Repository: Environmental Impact Statement and Radiological Risk Assessment“. In ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation. ASMEDC, 2003. http://dx.doi.org/10.1115/icem2003-4865.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The Environmental Impact Statement (EIS) for the proposed Australian National Repository for low and short-lived intermediate level radioactive waste was submitted to Environment Australia for approval in the summer of 2002 and has subsequently undergone a consultancy phase with comments sought from all relevant stakeholders. The consultancy period is now closed and responses to the comments have been prepared. This paper describes some of the issues relevant to determining the radiological risk associated with the repository to meet the requirements of the EIS. These include a brief description of the three proposed sites, a description of the proposed trench design, an analysis of the radioactive waste inventory, the proposed approach to developing waste acceptance criteria (WAC) and the approach taken to determine radiological risks during the post-institutional control phase. The three potential sites for the repository are located near the Australian Department of Defence site at Woomera, South Australia. One site is inside the Defense site and two are located nearby, but outside of the site perimeter. All have very similar, but not identical, topographical, geological and hydrogeological characteristics. A very simple trench design has been proposed 15 m deep and with 5 m of cover. One possible variant may be the construction of deeper borehole type vaults to dispose of the more active radioactive sources. A breakdown of the current and predicted future inventory will be presented. The current wastes are dominated in terms of volume by some contaminated soils, resulting from experiments to extract U and Th, and by the operational wastes from the HIFAR research reactor at ANSTO. A significant proportion of the radionuclide inventory is associated with small volumes of sources held by industry, medical, research and defence organisations. The proposed WAC will be described. These are based on the current Australian guidelines and best international practice. The preliminary radiological risk assessment considered the post-institutional control phase in detail with some 12 scenarios being assessed. These include the impact of potential climate change in the region. The results from the risk assessment will be presented and discussed. The assessment work is continuing and will support the license application for construction and operation of the site. Please note that this is not the final assessment for the licence application.

Zur Bibliographie