Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Acid hydrolysis“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Acid hydrolysis" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Acid hydrolysis"
Paventi, Martino, Francis L. Chubb und John T. Edward. „Assisted hydrolysis of the nitrile group of 2-aminoadamantane-2-carbonitrile“. Canadian Journal of Chemistry 65, Nr. 9 (01.09.1987): 2114–17. http://dx.doi.org/10.1139/v87-351.
Der volle Inhalt der QuelleKurbanova, Marina, und Svetlana Maslennikova. „Acid Hydrolysis of Casein“. Foods and Raw Materials 2, Nr. 1 (26.05.2014): 27–30. http://dx.doi.org/10.12737/4124.
Der volle Inhalt der QuelleThanh Ngoc, Nguyen Thi. „INFLUENCES OF TECHOLOGICAL HYDROLYSIS CONDITION ON NUCLEIC ACID CONTENT OF SPENT BREWER’S YEAST HYDROLYSATE“. Vietnam Journal of Science and Technology 55, Nr. 5A (24.03.2018): 169. http://dx.doi.org/10.15625/2525-2518/55/5a/12192.
Der volle Inhalt der QuelleHendriks, W. H., M. F. Tarttelin und P. J. Moughan. „The amino acid composition of cat (Felis catus) hair“. Animal Science 67, Nr. 1 (August 1998): 165–70. http://dx.doi.org/10.1017/s1357729800009905.
Der volle Inhalt der QuellePęksa, A., und J. Miedzianka. „Amino acid composition of enzymatically hydrolysed potato protein preparations“. Czech Journal of Food Sciences 32, No. 3 (11.06.2014): 265–72. http://dx.doi.org/10.17221/286/2013-cjfs.
Der volle Inhalt der QuelleLü, F., P. J. He, L. P. Hao und L. M. Shao. „Impact of recycled effluent on the hydrolysis during anaerobic digestion of vegetable and flower waste“. Water Science and Technology 58, Nr. 8 (01.10.2008): 1637–43. http://dx.doi.org/10.2166/wst.2008.511.
Der volle Inhalt der QuelleSinninghe Damsté, Jaap S., W. Irene C. Rijpstra, Ellen C. Hopmans, Johan W. H. Weijers, Bärbel U. Foesel, Jörg Overmann und Svetlana N. Dedysh. „13,16-Dimethyl Octacosanedioic Acid (iso-Diabolic Acid), a Common Membrane-Spanning Lipid of Acidobacteria Subdivisions 1 and 3“. Applied and Environmental Microbiology 77, Nr. 12 (22.04.2011): 4147–54. http://dx.doi.org/10.1128/aem.00466-11.
Der volle Inhalt der QuelleZhuang, Jun Ping, Lu Lin, Chun Sheng Pang und Ying Liu. „Hydrolysis Kinetics of Wheat Straw in Saturated Formic Acid / 4% Hydrochloric Acid Solution“. Advanced Materials Research 236-238 (Mai 2011): 138–41. http://dx.doi.org/10.4028/www.scientific.net/amr.236-238.138.
Der volle Inhalt der QuelleFreeman, Stuart J., Prema Shankaran, Leonhard S. Wolfe und John W. Callahan. „Phosphatidylcholine and 4-methylumbelliferyl phosphorylcholine hydrolysis by purified placental sphingomyelinase“. Canadian Journal of Biochemistry and Cell Biology 63, Nr. 4 (01.04.1985): 272–77. http://dx.doi.org/10.1139/o85-040.
Der volle Inhalt der QuelleLoh, Zhi Hung, Natasha L. Hungerford, Diane Ouwerkerk, Athol V. Klieve und Mary T. Fletcher. „Identification of Acid Hydrolysis Metabolites of the Pimelea Toxin Simplexin for Targeted UPLC-MS/MS Analysis“. Toxins 15, Nr. 9 (05.09.2023): 551. http://dx.doi.org/10.3390/toxins15090551.
Der volle Inhalt der QuelleDissertationen zum Thema "Acid hydrolysis"
Burton, Russell J. „Mild acid hydrolysis of wood“. Thesis, Loughborough University, 1986. https://dspace.lboro.ac.uk/2134/27345.
Der volle Inhalt der QuellePeña, Duque Leidy Eugenia. „Acid-functionalized nanoparticles for biomass hydrolysis“. Diss., Kansas State University, 2013. http://hdl.handle.net/2097/16800.
Der volle Inhalt der QuelleDepartment of Biological & Agricultural Engineering
Donghai Wang
Cellulosic ethanol is a renewable source of energy. Lignocellulosic biomass is a complex material composed mainly of cellulose, hemicellulose, and lignin. Biomass pretreatment is a required step to make sugar polymers liable to hydrolysis. Mineral acids are commonly used for biomass pretreatment. Using acid catalysts that can be recovered and reused could make the process economically more attractive. The overall goal of this dissertation is the development of a recyclable nanocatalyst for the hydrolysis of biomass sugars. Cobalt iron oxide nanoparticles (CoFe[superscript]2O[subscript]4) were synthesized to provide a magnetic core that could be separated from reaction using a magnetic field and modified to carry acid functional groups. X-ray diffraction (XRD) confirmed the crystal structure was that of cobalt spinel ferrite. CoFe[superscript]2O[superscript]4 were covered with silica which served as linker for the acid functions. Silica-coated nanoparticles were functionalized with three different acid functions: perfluoropropyl-sulfonic acid, carboxylic acid, and propyl-sulfonic acid. Transmission electron microscope (TEM) images were analyzed to obtain particle size distributions of the nanoparticles. Total carbon, nitrogen, and sulfur were quantified using an elemental analyzer. Fourier transform infra-red spectra confirmed the presence of sulfonic and carboxylic acid functions and ion-exchange titrations accounted for the total amount of catalytic acid sites per nanoparticle mass. These nanoparticles were evaluated for their performance to hydrolyze the β-1,4 glycosidic bond of the cellobiose molecule. Propyl-sulfonic (PS) and perfluoropropyl-sulfonic (PFS) acid functionalized nanoparticles catalyzed the hydrolysis of cellobiose significantly better than the control. PS and PFS were also evaluated for their capacity to solubilize wheat straw hemicelluloses and performed better than the control. Although PFS nanoparticles were stronger acid catalysts, the acid functions leached out of the nanoparticle during the catalytic reactions. PS nanoparticles were further evaluated for the pretreatment of corn stover in order to increase digestibility of the biomass. The pretreatment was carried out at three different catalyst load and temperature levels. At 180°C, the total glucose yield was linearly correlated to the catalyst load. A maximum glucose yield of 90% and 58% of the hemicellulose sugars were obtained at this temperature.
Dolmetsch, Troy R. „Phosphomolybdic Acid Catalysis of Cellulose Hydrolysis“. Digital Commons @ East Tennessee State University, 2017. https://dc.etsu.edu/honors/413.
Der volle Inhalt der QuelleKupiainen, L. (Laura). „Dilute acid catalysed hydrolysis of cellulose – extension to formic acid“. Doctoral thesis, Oulun yliopisto, 2012. http://urn.fi/urn:isbn:9789526200033.
Der volle Inhalt der QuelleTiivistelmä Uusia menetelmiä etsitään kemikaalien, polttoaineiden ja energian valmistamiseen uusiutuvasta biomassasta. Eräs biomassa, ns. lignoselluloosa, koostuu pääasiassa selluloosasta, hemiselluloosasta ja ligniinistä. Selluloosa ja hemiselluloosa voidaan muuttaa hydrolyysin avulla niiden rakennuspalikoikseen eli sokereiksi. Tämä väitöskirja keskittyy glukoosin tuottamiseen selluloosasta laimean happohydrolyysin menetelmällä. Happohydrolyysi kärsii rajoittuneesta glukoosin saannosta, mutta sillä on potentiaalia tulla lyhyen aikavälin ratkaisuksi biokemikaalien tuotannossa. Happohydrolyysin aikana selluloosaketju pilkkoutuu glukoosiksi, joka reagoi edelleen hajoamisreaktioiden kautta hydroksimetyylifurfuraaliksi, levuliini- ja muurahaishapoiksi ja kiinteäksi sivutuotteeksi. Tämän tutkimuksen tavoitteena on kasvattaa ymmärrystämme monimutkaisesta happokatalysoidusta selluloosan hydrolyysistä. Glukoosin hajoamista ja selluloosan hydrolyysiä tutkittiin erikseen laboratoriokokein. Kineettistä mallinnusta käytettiin työkaluna arvioimaan tuloksia. Vety-ionien vaikutus reaktioihin arvioitiin käyttämällä muurahais- ja rikkihappoja katalyytteinä. Tämä väitöskirja antaa uutta tietoa selluloosan hydrolyysistä ja glukoosin hajoamisreaktioista muurahaishapossa, joka on uusi katalyytti korkean lämpötilan laimean hapon hydrolyysissä. Glukoosisaannot muurahaishappo-hydrolysoidusta selluloosasta olivat vertailukelpoisia vastaaviin rikkihappo-hydrolyysi saantoihin. Tämä viittaa siihen, että heikko orgaaninen happo voisi toimia selluloosahydrolyysin katalyyttinä. Kun katalyyttinä käytettiin muurahaishappoa, vehnän oljesta tehdyt kuidut hydrolysoituivat selektiivisemmin glukoosiksi kuin mallikomponenttina toimineen mikrokiteisen selluloosan. Kun vetyionikonsentraation lämpötilariippuvuus otettiin huomioon, glukoosi hajosi samalla tavalla sekä muurahais- että rikkihappokatalyytissä, mutta merkittävä ero havaittiin selluloosahydrolyysin reaktionopeudessa. Havainnot voidaan selittää selluloosahydrolyysin mekanismissa tapahtuvilla muutoksilla. Väitöskirjassa esitetään, että sivureaktioilla selluloosasta ei-glukoosi-tuotteiksi on merkittävä vaikutus systeemiin
Orozco, Angela Maria. „Dilute acid hydrolysis of municipal solid waste using phosphoric acid“. Thesis, Queen's University Belfast, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501392.
Der volle Inhalt der QuelleHartley, James Holroyd. „Saccharide accelerated hydrolysis of boronic acid imines“. Thesis, University of Birmingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369335.
Der volle Inhalt der QuellePeña, Duque Leidy E. „Acid-functionalized nanoparticles for hydrolysis of lignocellulosic feedstocks“. Thesis, Kansas State University, 2009. http://hdl.handle.net/2097/2201.
Der volle Inhalt der QuelleDepartment of Biological and Agricultural Engineering
Donghai Wang
Acid catalysts have been successfully used for pretreatment of cellulosic biomass to improve sugar recovery and its later conversion to ethanol. However, use of acid requires a considerable equipment investment as well as disposal of residues. Acid-functionalized nanoparticles were synthesized for pretreatment and hydrolysis of lignocellulosic biomass to increase conversion efficiency at mild conditions. Advantages of using acid-functionalized metal nanoparticles are not only the acidic properties to catalyze hydrolysis and being small enough to penetrate into the lignocellulosic structure, but also being easily separable from hydrolysis residues by using a strong magnetic field. Cobalt spinel ferrite magnetic nanoparticles were synthesized using a microemulsion method and then covered with a layer of silica to protect them from oxidation. The silanol groups of the silica serve as the support of the sulfonic acid groups that were later attached to the surface of the nanoparticles. TEM images and FTIR methods were used to characterize the properties of acid-functionalized nanoparticles in terms of nanoparticle size, presence of sulfonic acid functional groups, and pH as an indicator of acid sites present. Citric acid-functionalized magnetite nanoparticles were also synthesized and evaluated. Wheat straw and wood fiber samples were treated with the acid supported nanoparticles at 80°C for 24 h to hydrolyze their hemicellulose fraction to sugars. Further hydrolysis of the liquid fraction was carried out to account for the amount of total solubilized sugars. HPLC was used to determine the total amount of sugars obtained in the aqueous solution. The perfluroalkyl-sulfonic acid functional groups from the magnetic nanoparticles yielded significantly higher amounts of oligosaccharides from wood and wheat straw samples than the alkyl-sulfonic acid functional groups did. More stable fluorosulfonic acid functionalized nanoparticles can potentially work as an effective heterogeneous catalyst for pretreatment of lignocellulosic materials.
Pena, Duque Leidy E. „Acid-functionalized nanoparticles for hydrolysis of lignocellulosic feedstocks“. Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/2201.
Der volle Inhalt der QuelleYusoff, M. I. „The acid-catalysed hydrolysis of some mesoionic heterocyclic compounds“. Thesis, University of Essex, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234173.
Der volle Inhalt der QuellePatel, Manisha. „Pyrolysis and gasification of biomass and acid hydrolysis residues“. Thesis, Aston University, 2013. http://publications.aston.ac.uk/19567/.
Der volle Inhalt der QuelleBücher zum Thema "Acid hydrolysis"
Hartley, James Holroyd. Saccharide accelerated hydrolysis of boronic acid imines. Birmingham: University of Birmingham, 2000.
Den vollen Inhalt der Quelle findenVecil, Giacomo G. Pharmacological characterization of excitatory amino acid-induced polyphosphoinositide hydrolysis. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1992.
Den vollen Inhalt der Quelle findenF, Harris John, und Forest Products Laboratory (U.S.), Hrsg. Two-stage, dilute sulfuric acid hydrolysis of wood: An investigation of fundamentals. [Madison, Wis.]: U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, 1985.
Den vollen Inhalt der Quelle findenZerbe, John I. Investigation of fundamentals of two-stage, dilute sulfuric acid hydrolysis of wood. [Madison, Wis.?: Forest Products Laboratory, 1988.
Den vollen Inhalt der Quelle findenZerbe, John I. Investigation of fundamentals of two-stage, dilute sulfuric acid hydrolysis of wood. [Madison, Wis.?: Forest Products Laboratory, 1988.
Den vollen Inhalt der Quelle findenBrenner, Walter. High temperature dilute acid hydrolysis of waste cellulose: Batch and continuous processes. Cincinnati, OH: Hazardous Waste Engineering Research Laboratory, U.S. Environmental Protection Agency, 1986.
Den vollen Inhalt der Quelle findenZerbe, John I. Investigation of fundamentals of two-stage, dilute sulfuric acid hydrolysis of wood. [Madison, Wis.?: Forest Products Laboratory, 1988.
Den vollen Inhalt der Quelle finden1940-, Harris John Frank, und Forest Products Laboratory (U.S.), Hrsg. Two-stage, dilute sulfuric acid hydrolysis of wood: An investigation of fundamentals. [Madison, Wis.]: U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, 1985.
Den vollen Inhalt der Quelle finden1940-, Harris John Frank, und Forest Products Laboratory (U.S.), Hrsg. Two-stage, dilute sulfuric acid hydrolysis of wood: An investigation of fundamentals. [Madison, Wis.]: U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, 1985.
Den vollen Inhalt der Quelle finden1940-, Harris John Frank, und Forest Products Laboratory (U.S.), Hrsg. Two-stage, dilute sulfuric acid hydrolysis of wood: An investigation of fundamentals. [Madison, Wis.]: U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, 1985.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Acid hydrolysis"
Dörr, Mark. „Acid Hydrolysis“. In Encyclopedia of Astrobiology, 37–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_21.
Der volle Inhalt der QuelleDörr, Mark. „Acid Hydrolysis“. In Encyclopedia of Astrobiology, 10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_21.
Der volle Inhalt der QuelleDörr, Mark. „Acid Hydrolysis“. In Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_21-2.
Der volle Inhalt der QuelleDörr, Mark. „Acid Hydrolysis“. In Encyclopedia of Astrobiology, 50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_21.
Der volle Inhalt der QuelleFan, Liang-tseng, Mahendra Moreshwar Gharpuray und Yong-Hyun Lee. „Acid Hydrolysis of Cellulose“. In Cellulose Hydrolysis, 121–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72575-3_4.
Der volle Inhalt der QuelleNguyen, Quang A., Melvin P. Tucker, Fred A. Keller, Delicia A. Beaty, Kevin M. Connors und Fannie P. Eddy. „Dilute Acid Hydrolysis of Softwoods“. In Twentieth Symposium on Biotechnology for Fuels and Chemicals, 133–42. Totowa, NJ: Humana Press, 1999. http://dx.doi.org/10.1007/978-1-4612-1604-9_13.
Der volle Inhalt der QuelleSlakey, L. L. „Extracellular Nucleotide Hydrolysis and Integration of Signalling“. In Biochemistry of Arachidonic Acid Metabolism, 323–41. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2597-0_20.
Der volle Inhalt der QuelleGuo, Qingbin, Lianzhong Ai und Steve W. Cui. „Partial Acid Hydrolysis and Molecular Degradation“. In SpringerBriefs in Molecular Science, 37–43. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96370-9_5.
Der volle Inhalt der QuellePenner, Michael H., Andrew G. Hashimoto, Alireza Esteghlalian und John J. Fenske. „Acid-Catalyzed Hydrolysis of Lignocellulosic Materials“. In ACS Symposium Series, 12–31. Washington, DC: American Chemical Society, 1996. http://dx.doi.org/10.1021/bk-1996-0647.ch002.
Der volle Inhalt der QuelleLee, Y. Y., Prashant Iyer und R. W. Torget. „Dilute-Acid Hydrolysis of Lignocellulosic Biomass“. In Recent Progress in Bioconversion of Lignocellulosics, 93–115. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-49194-5_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Acid hydrolysis"
M Soleimani, L Tabil, S Panigrahi und B Crerar. „Kinetics of Acid-Catalyzed Hemicellulose Hydrolysis“. In 2009 Reno, Nevada, June 21 - June 24, 2009. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2009. http://dx.doi.org/10.13031/2013.27364.
Der volle Inhalt der QuelleZhang, Qin, Yanbin Li, Jingjing Li und Chunmei Ma. „Dilute acid hydrolysis of cotton stalks and ethanol production from hydrolytic liquids“. In Environment (ICMREE). IEEE, 2011. http://dx.doi.org/10.1109/icmree.2011.5930852.
Der volle Inhalt der QuelleLeidy Peña, Donghai Wang, Keit Hohn, Milles Ikenberry und Dan Boyle. „Acid Functionalized Nanoparticles for Hydrolysis of Lignocellulosic Feedstocks“. In 2009 Reno, Nevada, June 21 - June 24, 2009. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2009. http://dx.doi.org/10.13031/2013.27249.
Der volle Inhalt der QuelleTarigan, Ayu Syufiatun, Basuki Wirjosentono, Cut Fatimah Zuhra und Zulnazri. „Preparation of low crystallinity nanocellulose using acid hydrolysis“. In THE II INTERNATIONAL SCIENTIFIC CONFERENCE “INDUSTRIAL AND CIVIL CONSTRUCTION 2022”. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0136122.
Der volle Inhalt der QuelleYuangsawad, Ratanaporn, Sarawut Sinpichai, Arunrot Sukra und Duangkamol Na-Ranong. „Free sterols from acid hydrolysis of steryl glucosides“. In 2021 6th International Conference on Business and Industrial Research (ICBIR). IEEE, 2021. http://dx.doi.org/10.1109/icbir52339.2021.9465867.
Der volle Inhalt der QuelleYazdani, Parviz, Keikhosro Karimi und Mohammad J. Taherzadeh. „Improvement of Enzymatic Hydrolysis of A Marine Macro-Alga by Dilute Acid Hydrolysis Pretreatment“. In World Renewable Energy Congress – Sweden, 8–13 May, 2011, Linköping, Sweden. Linköping University Electronic Press, 2011. http://dx.doi.org/10.3384/ecp11057186.
Der volle Inhalt der QuelleAndersson, Sanna, Mari Lähde, Satu Mikkola, Gareth Morris, Alicja Stachelska, Satu Valakoski und Nicholas H. Williams. „Metal ion-promoted hydrolysis of mRNA 5'-cap models“. In XIIth Symposium on Chemistry of Nucleic Acid Components. Prague: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2002. http://dx.doi.org/10.1135/css200205373.
Der volle Inhalt der QuellePopa, Emil, Tudorel Balau Mindru, Melinda Pruneanu und Stelian Sergiu Maier. „Studies on the Acid Hydrolysis of Chamois Leather Wastes“. In The 6th International Conference on Advanced Materials and Systems. INCDTP - Division: Leather and Footwear Research Institute, Bucharest, RO, 2016. http://dx.doi.org/10.24264/icams-2016.iv.11.
Der volle Inhalt der QuelleChao, Chung-Hsing, Tien-Chien Jen und Yen-Hsi Ho. „Analysis and Experiment on Dynamic Prediction in Magnesium Hydride Hydrolysis as Hydrogen Generator“. In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62502.
Der volle Inhalt der QuelleJen, Tien-Chien, Joshua Adeniran, Esther Akinlabi, Chung-Hsing Chao, Yen-Hsi Ho und Johan De Koker. „Hydrogen Generation From Acetic Acid Catalyzed Magnesium Hydride Using an On-Demand Hydrogen Reactor“. In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66459.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Acid hydrolysis"
Lee, Y. Y. Enhancement of Dilute-Acid Total-Hydrolysis Process. Office of Scientific and Technical Information (OSTI), April 2000. http://dx.doi.org/10.2172/764595.
Der volle Inhalt der QuelleMarek, J. C. Hydrolysis of late-washed, irradiated tetraphenylborate slurry simulants I: Phenylboric acid hydrolysis kinetics. Office of Scientific and Technical Information (OSTI), Februar 2000. http://dx.doi.org/10.2172/751282.
Der volle Inhalt der QuelleHarris, John F., Andrew J. Baker, Anthony H. Conner, Thomas W. Jeffries, James L. Minor, Roger C. Pettersen, Ralph W. Scott, Edward L. Springer, Theodore H. Wegner und John I. Zerbe. Two-stage, dilute sulfuric acid hydrolysis of wood : an investigation of fundamentals. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 1985. http://dx.doi.org/10.2737/fpl-gtr-45.
Der volle Inhalt der QuelleLee, Y. Y., Qian Xiang, Tae-Hyun Kim und Junseok Kim. Enhancement of Dilute-Acid Total-Hydrolysis Process for High-Yield Saccharification of Cellulosic Biomass. Office of Scientific and Technical Information (OSTI), Juli 2000. http://dx.doi.org/10.2172/763027.
Der volle Inhalt der QuelleVan Wychen, Stefanie R., und Lieve M. Laurens. Determination of Total Sterols in Microalgae by Acid Hydrolysis and Extraction: Laboratory Analytical Procedure (LAP). Issue Date: December 21, 2018. Office of Scientific and Technical Information (OSTI), Dezember 2018. http://dx.doi.org/10.2172/1488917.
Der volle Inhalt der QuelleTao, L., D. Schell, R. Davis, E. Tan, R. Elander und A. Bratis. NREL 2012 Achievement of Ethanol Cost Targets: Biochemical Ethanol Fermentation via Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1129271.
Der volle Inhalt der QuelleAden, A., M. Ruth, K. Ibsen, J. Jechura, K. Neeves, J. Sheehan, B. Wallace, L. Montague, A. Slayton und J. Lukas. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover. Office of Scientific and Technical Information (OSTI), Juni 2002. http://dx.doi.org/10.2172/15001119.
Der volle Inhalt der QuelleDean R. Peterman, Bruce J. Mincher, Catherine L. Riddle und Richard D. Tillotson. Summary Report on Gamma Radiolysis of TBP/n-dodecane in the Presence of Nitric Acid Using the Radiolysis/Hydrolysis Test Loop. Office of Scientific and Technical Information (OSTI), August 2010. http://dx.doi.org/10.2172/993164.
Der volle Inhalt der QuelleWooley, R., M. Ruth, J. Sheehan, K. Ibsen, H. Majdeski und A. Galvez. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis Current and Futuristic Scenarios. Office of Scientific and Technical Information (OSTI), Juli 1999. http://dx.doi.org/10.2172/12150.
Der volle Inhalt der QuelleLarson, Steven L., Deborah R. Felt, Scott Waisner, Catherine C. Nestler, Charles G. Coyle und Victor F. Medina. The Effect of Acid Neutralization on Analytical Results Produced from SW846 Method 8330 after the Alkaline Hydrolysis of Explosives in Soil. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada570210.
Der volle Inhalt der Quelle