Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Acid-activated material“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Acid-activated material" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Acid-activated material"
Dai, Yi Min, Ru Bin Tan, Wen Min Shi, Zhen Fei Liang und Long Tan. „A Study on the Reduction of HCN in Cigarette Smoke by Loading Cuprous Oxide on the Surface of Activated Carbon“. Advanced Materials Research 239-242 (Mai 2011): 306–9. http://dx.doi.org/10.4028/www.scientific.net/amr.239-242.306.
Der volle Inhalt der QuelleWang, Kun, Qiao Wen Yang, Chuan Liu, Hui Zhao, Gan Chen und Shi Wei Wang. „Study of Deashing and Activation on the Coke Fines and Semi-Cokes Based on Properties of Composite Materials“. Advanced Materials Research 600 (November 2012): 178–81. http://dx.doi.org/10.4028/www.scientific.net/amr.600.178.
Der volle Inhalt der QuelleLi, Ya Jie, Xing Yuan Ni, Jun Shen, Dong Liu und Nian Ping Liu. „Nitric Acid Activated Carbon Aerogels for Supercapacitors“. Applied Mechanics and Materials 302 (Februar 2013): 158–64. http://dx.doi.org/10.4028/www.scientific.net/amm.302.158.
Der volle Inhalt der QuelleGoodwin, Vituruch, Thanathon Sesuk und Parinya Jitreewas. „Biobased Activated Carbon from Palm Biomass Enhancing with Acid Treatment as Supercapacitor Electrode Material“. SIAM: Science and Innovation of Advanced Materials 4, Nr. 1 (25.06.2024): 67002. http://dx.doi.org/10.48048/siam.2024.67002.
Der volle Inhalt der QuelleKovalchuk, Oleksandr, und Victoriia Zozulynets. „STUDY OF ACID RESISTANCE OF HYBRID ALKALI ACTIVATED NORMAL HARDENING CEMENTS“. Urban development and spatial planning, Nr. 81 (31.08.2022): 189–98. http://dx.doi.org/10.32347/2076-815x.2022.81.189-198.
Der volle Inhalt der QuelleAyati, Bamdad, Darryl Newport, Hong Wong und Christopher Cheeseman. „Acid activated smectite clay as pozzolanic supplementary cementitious material“. Cement and Concrete Research 162 (Dezember 2022): 106969. http://dx.doi.org/10.1016/j.cemconres.2022.106969.
Der volle Inhalt der QuelleShrestha, Rajeshwar Man. „Characterization of Activated carbons Prepared from a Locally Available Material by Iodine Number“. Journal of the Institute of Engineering 13, Nr. 1 (22.06.2018): 139–44. http://dx.doi.org/10.3126/jie.v13i1.20359.
Der volle Inhalt der QuelleTišler, Zdeněk, Kateřina Hrachovcová, Eliška Svobodová, Jan Šafář und Lenka Pelíšková. „Acid and Thermal Treatment of Alkali-Activated Zeolite Foams“. Minerals 9, Nr. 12 (20.11.2019): 719. http://dx.doi.org/10.3390/min9120719.
Der volle Inhalt der QuelleJoko Murtono und Iriany. „PEMBUATAN KARBON AKTIF DARI CANGKANG BUAH KARET DENGAN AKTIVATOR H3PO¬4 DAN APLIKASINYA SEBAGAI PENJERAP Pb(II)“. Jurnal Teknik Kimia USU 6, Nr. 1 (19.05.2017): 43–48. http://dx.doi.org/10.32734/jtk.v6i1.1564.
Der volle Inhalt der QuellePark, Jung Eun, Gi Bbum Lee, Ho Kim und Bum Ui Hong. „High Surface Area–Activated Carbon Production from Cow Manure Controlled by Heat Treatment Conditions“. Processes 10, Nr. 7 (29.06.2022): 1282. http://dx.doi.org/10.3390/pr10071282.
Der volle Inhalt der QuelleDissertationen zum Thema "Acid-activated material"
Robbins, Steven C. „Distribution of Colloidal Material in Activated Sludge as Influenced by Cations“. Thesis, Virginia Tech, 2004. http://hdl.handle.net/10919/45540.
Der volle Inhalt der QuelleMaster of Science
Yang, Qi. „Résistance au feu de géopolymère alcalin et de de géopolymère acide“. Electronic Thesis or Diss., Centrale Lille Institut, 2024. http://www.theses.fr/2024CLIL0014.
Der volle Inhalt der QuelleThis work deals with the fire resistance properties of geopolymers alkali- or acid-activated.The first part deals with the state of the art of the development of geopolymer materials,including their synthesis process, activation methods, application scenarios, and the influenceof their components on properties. A particular focus is on their potential benefit as fire-resistant materials. The thesis reveals the superior fire resistance of alkaline geopolymers andinvestigate the factors affecting the fire resistance, including the Al/Si ratio, and type ofcations. The results evidence that the lower the Al/Si ratio, the more the geopolymer softensat high temperatures (≥ 100°C) and expands due to the driving force of water vaporization.Compared to sodium-based geopolymers, potassium-based geopolymers have a lower levelof polymerization for the same curing time. Even with a high Al/Si ratio, low-polymerizationsilicates can form and cause the geopolymer to expand at high temperatures. In contrast,sodium-based geopolymers undergo higher complete polymerization reactions but lose theirsoftening ability at high temperatures (≥ 100°C) and are prone to cracking.Similar to alkali-activated geopolymers, acid-activated geopolymers exhibit good fireresistance thanks to their intumescence characteristics upon heating. The main factorinfluencing such property is the P/Al ratio. When the P/Al ratio is high (≥ 0.74), a largeamount of slightly condensed phosphorus is generated, which dehydrates and condensesupon heating, causing the material to soften and expand. Due to this intumescencecharacteristic, geopolymers with low Al/Si (alkaline geopolymer) or high P/Al (acidicgeopolymer) are promising fire-resistant material
Li, Zihui. „Acid Leaching Resistance and Alkali Silica Reaction (ASR) of Alkali-Activated Cement Free Binders“. Thesis, Clarkson University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10640300.
Der volle Inhalt der QuelleRecently, increased awareness of the significance of developing sustainable materials for construction has renewed the interest in exploring Alkali activated concrete (AAC), a concrete that contains no cement, but only industrial by-products such as fly ash and slag, as a low energy alternative to the conventional concrete. Although the feasibility of making alkali–activated concrete with acceptable strength and mechanical properties is well documented, the information regarding the long-term durability, including resistance to acid attack and alkali silica reaction (ASR), is far from comprehensive and there is a need to increase the understanding of these durability issues. In this dissertation, these durability issues are addressed, and improvements in this novel technology will increase acceptance in industry. This dissertation presents a comprehensive evaluation into the acid leaching resistance of Alkali-Activated Concrete (AAC) and Ordinary Portland Cement (OPC). The deterioration in AAC and OPC when exposed to different types of acid laden (organic and inorganic) environments are quantified by characterizing the strength degradation, mass change and visual appearances. The changes in microstructure development and chemical composition are examined and analyzed in order to determine the mechanism of deterioration. Additionally, the effect of the addition of nanoparticles on the mechanical properties and resistance to sulfuric leaching of Alkali Activated Slag concrete (AAS) are also explored in this study.
Furthermore, this dissertation summarizes the findings of an experimental evaluation of alkali silica reaction (ASR) in cement free alkali activated concrete (AAC). The susceptibility of AAC to deleterious ASR was evaluated in this study in accordance with relevant ASTM standards. This study also compares the resistance of AAC with ordinary portland cement concrete (OPC) while exposed to ASR under ASTM C 1293 and ASTM C1567 tests. In particular, the focus of this investigation is to assess the effectiveness of existing ASTM test methods in identifying the occurrence of ASR in alkali activated slag cement (AAS) concrete. In addition to that, influences of activator parameters including the effect of binder type, activator concentration, activator type and water content to the resistance of ASR in AAC were also evaluated. Finally, a scanning electron microscopic study coupled with EDX analyses was used to explain the mechanism of ASR occurrence in AAC and OPC.
Pan, Chung-kai, und 潘仲凱. „Phosphoric Acid Activated Carbon Fabrics as Supercapacitor Materials“. Thesis, 2006. http://ndltd.ncl.edu.tw/handle/45371813364590711505.
Der volle Inhalt der Quelle逢甲大學
材料科學所
94
Activated carbon fiber fabrics were prepared with oxidized PAN fiber precursor in which phosphoric acid is used as a chemical-activation agent, and co-activated with steam or carbon dioxide gas in various temperature, 700 to 1000℃. Due to the high specific surface area, ACFFs were often used as an electrode of the electric double-layer capacitor. The study was focused on the influence of different chemical activation method and the physical properties to the microstructures of ACFFs, and also the performances of the capacitance of the electric double-layer. The porous structure of ACFFs was created in the activation and the porous texture was influenced by different activation method technique which is depended on the activated agents. The experimental data shows that the micropores structure were created very fast in the early stage of activation, and then the porous structure will connected with each other to from supermicro- or meso-pores in the further activation gradually. There is a maximum specific surface area, 1087 m2/g, contributed from the micropore structure for the major porous system of ACFFs. When raising the activation temperature to 1000℃, a large amount of mesopores was created on ACFFs, and with 660 m2/g specific surface area for mesopore which was activated with steam agent. From cyclic voltammetry, there was a the maximum specific capacitance, 173 F/g, which the ACFFs electrode was activated at 900℃ with 829 m2/g. The result suggests that specific capacitance was not only dependent on specific surface area, but the porous texture.
Morris, Eric Adde. „Modification of Carbonaceous Materials with Sulfur and Its Impact on Mercury Capture and Sorbent Regenertion“. Thesis, 2012. http://hdl.handle.net/1807/36293.
Der volle Inhalt der QuelleBücher zum Thema "Acid-activated material"
Parker, Philip M. The 2007-2012 World Outlook for Treated Clays That Have Been Artificially Activated with Acid or Other Materials. ICON Group International, Inc., 2006.
Den vollen Inhalt der Quelle findenThe 2006-2011 World Outlook for Treated Clays That Have Been Artificially Activated with Acid or Other Materials. Icon Group International, Inc., 2005.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Acid-activated material"
Davoodabadi, Maliheh, Marco Liebscher, Massimo Sgarzi, Leif Riemenschneider, Daniel Wolf, Silke Hampel, Gianaurelio Cuniberti und Viktor Mechtcherine. „Electrical and Sulfate-Sensing Properties of Alkali-Activated Nanocomposites“. In Lecture Notes in Civil Engineering, 285–96. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_29.
Der volle Inhalt der QuelleAigbodion, V. S., und P. A. Ozor. „New Insights into the Polymer Coating of Mild Steel Using Activated Orange Juice Functionalized Rice Husk Nanoparticles“. In Lecture Notes in Mechanical Engineering, 1037–43. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28839-5_115.
Der volle Inhalt der QuelleTan, X., B. Liu, W. Hong, G. F. Chang und X. F. Zou. „Adsorption properties of modified powdered activated carbon on salicylic acid wastewater“. In Advances in Materials Science, Energy Technology and Environmental Engineering, 379–82. P.O. Box 11320, 2301 EH Leiden, The Netherlands, e-mail: Pub.NL@taylorandfrancis.com , www.crcpress.com – www.taylorandfrancis.com: CRC Press/Balkema, 2016. http://dx.doi.org/10.1201/9781315227047-75.
Der volle Inhalt der QuelleLee, Joon Jae, Jeong Kwon Suh, Ji Sook Hong, Jung Min Lee und Jin Won Park. „Physicochemical Characteristics of ZnS Immobilized on Spherical Activated Carbon for Removing HA(Humic Acid)“. In Eco-Materials Processing and Design IX, 37–40. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-472-3.37.
Der volle Inhalt der QuelleRathod, Yashpal, Anup Parmar und Wasudeo Gurnule. „NOVEL RELATIVE STUDIES: SYNTHESIS, CHARACTERIZATION OF COPOLYMER COMPOSITES AND THEIR ANTIMICROBIAL STUDY“. In Futuristic Trends in Chemical Material Sciences & Nano Technology Volume 3 Book 18, 112–22. Iterative International Publishers, Selfypage Developers Pvt Ltd, 2024. http://dx.doi.org/10.58532/v3bdcs18ch10.
Der volle Inhalt der QuelleSoonmin, Ho. „ACTIVATED CARBON: RECENT PROGRESS AND APPLICATIONS“. In Futuristic Trends in Chemical Material Sciences & Nano Technology Volume 3 Book 10, 91–108. Iterative International Publisher, Selfypage Developers Pvt Ltd, 2024. http://dx.doi.org/10.58532/v3bbcs10p3ch2.
Der volle Inhalt der QuelleKumarasamy, Gayathri, Sathishkumar Samiyappan und Nirmaladevi Samiappan. „FUNCTIONALIZED POLYACRYLAMIDE/GRAPHITE COMPOSITES AS AN ADSORBENTS FOR THE DECOLOURISATION OF SYNTHETIC DYES AND DYEING INDUSTRY EFFLUENT FROM FABRIC PROCESSING UNITS“. In Futuristic Trends in Chemical Material Sciences & Nano Technology Volume 3 Book 16, 18–26. Iterative International Publishers, Selfypage Developers Pvt Ltd, 2024. http://dx.doi.org/10.58532/v3bjcs16p1ch2.
Der volle Inhalt der QuelleJeffery-Smith, Anna, und C. Y. William Tong. „The Biology of Viruses“. In Tutorial Topics in Infection for the Combined Infection Training Programme. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198801740.003.0008.
Der volle Inhalt der Quelleİsmail Tosun, Yıldırım. „Adsorption of Heavy Metals by Microwave Activated Shale/Asphaltite Char/Zeolite Granule Composts from Hazardous Sludges and Industrial Waste Slurries“. In Clay Science and Technology [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.94404.
Der volle Inhalt der QuelleUpadhyay, Virendra, Rajat Sengar und Sudhir Kumar Verma. „Assessment of C.I. ACID RED 2 Adsorption From Aqueous Solution by Modified, Activated, and Raw Water Hyacinth as a Low-Cost Green Adsorbent“. In Advances in Chemical and Materials Engineering, 163–86. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-5320-2.ch008.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Acid-activated material"
Simatupang, Partogi H. „Characteristics of alkali activated material (geopolymer) in sulfuric acid solution“. In GREEN CONSTRUCTION AND ENGINEERING EDUCATION FOR SUSTAINABLE FUTURE: Proceedings of the Green Construction and Engineering Education (GCEE) Conference 2017. Author(s), 2017. http://dx.doi.org/10.1063/1.5003511.
Der volle Inhalt der QuelleKumar, Awinash, Pradip Lingfa, Nabam Hina Papu und Moiching Sajit Ahamed. „Characterization of acid-activated sodium bentonite clay: A potential catalyst for recycling plastic wastes“. In PROCEEDINGS OF ADVANCED MATERIAL, ENGINEERING & TECHNOLOGY. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0024321.
Der volle Inhalt der QuelleQin, Hangdao, Hui Li, Yong Wang und Jing Chen. „Removal of Benzoic Acid by Catalytic Ozonation with CeO2 Loaded on N, S Co-Doped Activated Carbon Catalyst“. In 2nd International Conference on Material Science, Energy and Environmental Engineering (MSEEE 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/mseee-18.2018.51.
Der volle Inhalt der QuelleV., Aswani, Shobha Elizabeth Thomas und Ramaswamy K. P. „Effect of Admixtures in Blast Furnace Slag-fly Ash Based Alkali-activated Paste“. In 6th International Conference on Modeling and Simulation in Civil Engineering. AIJR Publisher, 2023. http://dx.doi.org/10.21467/proceedings.156.29.
Der volle Inhalt der QuelleHornstra, E. G., A. H. Hennissen, R. Kalafusz und D. T. S. Tan. „THE ANTITHROMBOTIC EFFECT OF PALM OIL IS CORRELATED WITH ITS CONTENTS OF VITAMIN E“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643804.
Der volle Inhalt der QuelleAl-Yami, Abdullah, Vikrant Wagle, Khawlah Al-Anqari, Abdulwahab Aljohar und Salah Elkatatny. „Curing Losses: Lab Developments and Best Practices“. In International Petroleum Technology Conference. IPTC, 2022. http://dx.doi.org/10.2523/iptc-22007-ms.
Der volle Inhalt der QuelleKamble, Mithil, Nikhil Koratkar und Catalin Picu. „Vitrimer Composites for Rotorcraft Components“. In Vertical Flight Society 77th Annual Forum & Technology Display. The Vertical Flight Society, 2021. http://dx.doi.org/10.4050/f-0077-2021-16896.
Der volle Inhalt der QuelleLittlefield, Andrew G., Stephen F. Bartolucci und Joshua A. Mauer. „A Study on the Use of Graphene-PEEK Composites As High Temperature Adhesives: Mechanical Properties and Microwave Activation“. In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70412.
Der volle Inhalt der QuelleCeban, Irina, Raisa Nastas und Tudor Lupascu. „Adsorption of caffeic acid on activated carbons“. In Scientific seminar "Advanced materials to reduce the impact of toxic chemicals on the environment and health". Institute of Chemistry, Republic of Moldova, 2023. http://dx.doi.org/10.19261/admateh.2023.ab07.
Der volle Inhalt der QuelleDenduluri, Veerabhadra S., George Ulerio II, Moneeb Genedy, Maria Juenger und Eric van Oort. „Experimental Investigation of Geopolymers for Application in High-Temperature and Geothermal Well Cementing“. In SPE/IADC International Drilling Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/212491-ms.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Acid-activated material"
Kennedy, Alan, Mark Ballentine, Andrew McQueen, Christopher Griggs, Arit Das und Michael Bortner. Environmental applications of 3D printing polymer composites for dredging operations. Engineer Research and Development Center (U.S.), Januar 2021. http://dx.doi.org/10.21079/11681/39341.
Der volle Inhalt der QuelleKanner, Joseph, Edwin Frankel, Stella Harel und Bruce German. Grapes, Wines and By-products as Potential Sources of Antioxidants. United States Department of Agriculture, Januar 1995. http://dx.doi.org/10.32747/1995.7568767.bard.
Der volle Inhalt der Quelle