Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Achiral nanostructures“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Achiral nanostructures" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Achiral nanostructures"
Sang, Yutao, Pengfei Duan und Minghua Liu. „Nanotrumpets and circularly polarized luminescent nanotwists hierarchically self-assembled from an achiralC3-symmetric ester“. Chemical Communications 54, Nr. 32 (2018): 4025–28. http://dx.doi.org/10.1039/c8cc02130a.
Der volle Inhalt der QuelleLiu, Changxia, Dong Yang, Li Zhang und Minghua Liu. „Water inversed helicity of nanostructures from ionic self-assembly of a chiral gelator and an achiral component“. Soft Matter 15, Nr. 32 (2019): 6557–63. http://dx.doi.org/10.1039/c9sm01176e.
Der volle Inhalt der QuelleYeom, Bongjun, Huanan Zhang, Hui Zhang, Jai Il Park, Kyoungwon Kim, Alexander O. Govorov und Nicholas A. Kotov. „Chiral Plasmonic Nanostructures on Achiral Nanopillars“. Nano Letters 13, Nr. 11 (22.10.2013): 5277–83. http://dx.doi.org/10.1021/nl402782d.
Der volle Inhalt der QuelleJin, Lei, Xiongyu Liang, Chengmao He, Tiejun Wang, Kun Liang und Li Yu. „Plasmon—Assisted Resonance Energy Transfer Involving Electric and Magnetic Coupling“. Electronics 13, Nr. 8 (19.04.2024): 1566. http://dx.doi.org/10.3390/electronics13081566.
Der volle Inhalt der QuelleHu, Yi, Shaogang Xu, Kai Miao, Xinrui Miao und Wenli Deng. „Same building block, but diverse surface-confined self-assemblies: solvent and concentration effects-induced structural diversity towards chirality and achirality“. Physical Chemistry Chemical Physics 20, Nr. 25 (2018): 17367–79. http://dx.doi.org/10.1039/c8cp01308j.
Der volle Inhalt der QuelleHu, Yi, Kai Miao, Shan Peng, Bao Zha, Li Xu, Xinrui Miao und Wenli Deng. „Structural transition control between dipole–dipole and hydrogen bonds induced chirality and achirality“. CrystEngComm 18, Nr. 17 (2016): 3019–32. http://dx.doi.org/10.1039/c5ce02321a.
Der volle Inhalt der QuelleSONG, XIN, HUIHUI KONG, LACHENG LIU, XIAOQING LIU, MINGDONG DONG und LI WANG. „TERRACE INDUCED HOMOCHIRAL SELF-ASSEMBLY OF ZINC PHTHALOCYANINEON COPPER (111) SURFACE“. Surface Review and Letters 23, Nr. 06 (17.11.2016): 1650047. http://dx.doi.org/10.1142/s0218625x16500475.
Der volle Inhalt der QuelleLiu, Guofeng, Jinying Liu, Chuanliang Feng und Yanli Zhao. „Unexpected right-handed helical nanostructures co-assembled from l-phenylalanine derivatives and achiral bipyridines“. Chemical Science 8, Nr. 3 (2017): 1769–75. http://dx.doi.org/10.1039/c6sc04808k.
Der volle Inhalt der QuelleLi, Hanbo, Xinshuang Gao, Chenqi Zhang, Yinglu Ji, Zhijian Hu und Xiaochun Wu. „Gold-Nanoparticle-Based Chiral Plasmonic Nanostructures and Their Biomedical Applications“. Biosensors 12, Nr. 11 (01.11.2022): 957. http://dx.doi.org/10.3390/bios12110957.
Der volle Inhalt der QuelleHe, Xiaorong, Qikai Li, Yuliang Li, Ning Wang, Yabin Song, Xiaofeng Liu, Mingjian Yuan et al. „Spontaneously Aggregated Chiral Nanostructures from Achiral Tripod−Terpyridine“. Journal of Physical Chemistry B 111, Nr. 28 (Juli 2007): 8063–68. http://dx.doi.org/10.1021/jp071706j.
Der volle Inhalt der QuelleDissertationen zum Thema "Achiral nanostructures"
Cui, Lingfei. „Antennes photoniques pour amplifier les interactions entre la lumière et la matière chirale“. Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS392.
Der volle Inhalt der QuelleThe detection of molecules based on fluorescence or Raman scattering has been widely studied and is currently used in industry and laboratories. However, many organic molecules of interest are chiral, and their chemical and biological properties depend on their enantiomer as well as on the chirality of their secondary structure. The quantity and chirality of biomolecules are classically determined by measuring the differential absorption between the two opposite circular polarizations (chiroptic method). However, this method is limited by the low differential absorption of chiral molecules, which is of the order of 10-3 in the UV part of the spectrum. Plasmonic resonators have the ability to resonantly interact with light and are characterized by a moderate quality factor and a low effective volume. This resonant interaction allows (i) to increase the coupling between molecules and light and (ii) to control the polarization properties of light. So far, the latest advances concern the implementation of nanostructured chiral surfaces with gammadion-type resonators or stacked twisted resonators that interact preferentially with a given helicity of light. However, the mechanism behind the differential response of biomolecules coupled to chiral resonators to circularly polarized light is still unclear, preventing the optimization of such detection. Moreover, in the research published so far, two different chiral sensors are needed to interact with right- and left-handed circularly polarized light, which requires complex calibration procedures. During the course of my PhD, I have studied the use of anisotropic achiral nanostructures to interact with chiral molecules. Indeed, they have the significant advantage over chiral nanostructures of changing the sign of the circular dichroism by controlling the incident polarization or the direction of propagation. Indeed, the symmetries of the electromagnetic field in close proximity to the resonators can be manipulated at will by changing illumination conditions hence providing a unique tool for studying the origin of the electromagnetic coupling between chiral biomolecule and nanoresonators. Consequently, in my PhD project I propose to use plasmonic nanoresonators to increase the light - “chiral matter” interactions in order to detect and study chiral molecules. I will use the concept of achiral plasmonic nanostructures (nanoslits) to develop innovative nanoresonators that will be used, once functionalized, to detect chiral biomolecules with enantiomer sensitivity. Indeed, achiral resonators can generate both signs of chiral fields as opposed to chiral resonators which would make their use very flexible. This work implies characterizing, describing and understanding the origins of chiral fields and how to make them homogeneous. Through the study of nanoslits, I demonstrate numerically and theoretically how to design a nanosource of pure superchiral light, free of any background and for which the sign of the chirality is tunable on-demand in wavelength and polarization. In the perspective, I will present experimental methods that could monitor the CD via fluorescence emission (FDCD for Fluorescence Detected Circular Dichroism) in the case of light harvesting molecules for molecules that need to be excited in the UV, autofluorescence may be used in conjunction with aluminum resonators. Without loss of generality, these considerations lead to the decision of investigating plasmonic resonators with resonance at 680 nm which correspond to the chiral absorption band of LHCII. The idea of blocking the excitation beam to collect only the emission of the chiral molecules leaded to the idea of investigating the resonances of openings in an opaque layer of gold
Buchteile zum Thema "Achiral nanostructures"
Sachs, Johannes. „Chiroptical Spectroscopy of Single Chiral and Achiral Nanoparticles“. In Motion, Symmetry & Spectroscopy of Chiral Nanostructures, 61–95. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-88689-9_4.
Der volle Inhalt der QuelleSachs, Johannes. „Motion of Chiral and Achiral Structures at Low Re“. In Motion, Symmetry & Spectroscopy of Chiral Nanostructures, 27–59. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-88689-9_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Achiral nanostructures"
Franklin, Daniel, Abraham Vázquez-Guardado und Debashis Chanda. „Superchiral light generation on achiral nanostructured surfaces“. In Photonic and Phononic Properties of Engineered Nanostructures VIII, herausgegeben von Ali Adibi, Shawn-Yu Lin und Axel Scherer. SPIE, 2018. http://dx.doi.org/10.1117/12.2290066.
Der volle Inhalt der QuelleOkamoto, Hiromi, Shun Hashiyada, Yoshio Nishiyama und Tetsuya Narushima. „Imaging Chiral Plasmons“. In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.5a_a410_1.
Der volle Inhalt der QuelleDi Donato, Eugenio. „The electronic structure of achiral nanotubes: a symmetry based treatment“. In ELECTRIC PROPERTIES OF SYNTHETIC NANOSTRUCTURES: XVII International Winterschool/Euroconference on Electronic Properties of Novel Materials. AIP, 2004. http://dx.doi.org/10.1063/1.1812107.
Der volle Inhalt der QuelleDionne, Jennifer A. „Towards all-optical chiral resolution with achiral plasmonic and dielectric nanostructures (Conference Presentation)“. In Complex Light and Optical Forces XII, herausgegeben von David L. Andrews, Enrique J. Galvez und Jesper Glückstad. SPIE, 2018. http://dx.doi.org/10.1117/12.2291597.
Der volle Inhalt der Quelle