Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Abelian structures“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Abelian structures" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Abelian structures"
Lu, Jianwei, und Liguo He. „On the Structures of Abelianπ-Regular Rings“. International Journal of Mathematics and Mathematical Sciences 2014 (2014): 1–4. http://dx.doi.org/10.1155/2014/842313.
Der volle Inhalt der QuelleClarke, Francis. „Counting abelian group structures“. Proceedings of the American Mathematical Society 134, Nr. 10 (10.04.2006): 2795–99. http://dx.doi.org/10.1090/s0002-9939-06-08396-1.
Der volle Inhalt der QuelleCONSOLE, S., A. FINO und Y. S. POON. „STABILITY OF ABELIAN COMPLEX STRUCTURES“. International Journal of Mathematics 17, Nr. 04 (April 2006): 401–16. http://dx.doi.org/10.1142/s0129167x06003576.
Der volle Inhalt der QuellePoon, Yat Sun. „Abelian Complex Structures and Generalizations“. Complex Manifolds 8, Nr. 1 (01.01.2021): 247–66. http://dx.doi.org/10.1515/coma-2020-0117.
Der volle Inhalt der QuelleTang, Guoliang. „Abelian model structures on comma categories“. Ukrains’kyi Matematychnyi Zhurnal 76, Nr. 3 (25.03.2024): 373–81. http://dx.doi.org/10.3842/umzh.v76i3.7289.
Der volle Inhalt der QuelleGoswami, Amartya. „Salamander lemma for non-abelian group-like structures“. Journal of Algebra and Its Applications 19, Nr. 02 (15.03.2019): 2050022. http://dx.doi.org/10.1142/s021949882050022x.
Der volle Inhalt der QuelleYu, Chia-Fu. „Abelian varieties over finite fields as basic abelian varieties“. Forum Mathematicum 29, Nr. 2 (01.03.2017): 489–500. http://dx.doi.org/10.1515/forum-2014-0141.
Der volle Inhalt der QuelleFokina, E., J. F. Knight, A. Melnikov, S. M. Quinn und C. Safranski. „Classes of Ulm type and coding rank-homogeneous trees in other structures“. Journal of Symbolic Logic 76, Nr. 3 (September 2011): 846–69. http://dx.doi.org/10.2178/jsl/1309952523.
Der volle Inhalt der QuelleRemm, Elisabeth, und Michel Goze. „Affine structures on abelian Lie groups“. Linear Algebra and its Applications 360 (Februar 2003): 215–30. http://dx.doi.org/10.1016/s0024-3795(02)00452-4.
Der volle Inhalt der QuelleYu, Chia-Fu. „Lifting abelian varieties with additional structures“. Mathematische Zeitschrift 242, Nr. 3 (01.04.2002): 427–41. http://dx.doi.org/10.1007/s002090100350.
Der volle Inhalt der QuelleDissertationen zum Thema "Abelian structures"
Steine, Asgeir Bertelsen. „STABILITY STRUCTURES FOR ABELIAN AND TRIANGULATED CATEGORIES“. Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2007. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9603.
Der volle Inhalt der QuelleThis thesis is intended to present some developments in the theory of algebraic stability. The main topics are stability for triangulated categories and the distinguished slopes of Hille and de la Pena for quiver representations.
Zatloukal, Kevin C. (Kevin Chaffee). „Applications of abelian algebraic structures in quantum computation“. Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/106102.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 163-168).
Shor's groundbreaking algorithms for integer factoring and discrete logarithm [58], along with their later generalizations 116, 35, 49, 18], demonstrated a unique ability of quantum computers to solve problems defined on abelian groups. In this thesis, we study ways in which that ability can be leveraged in order to solve problems on more complex structures such as non-abelian groups and hypergroups. This leads to new quantum algorithms for the hidden subgroup problem on nilpotent groups whose order is a product of large primes, the hidden subhypergroup problem on both strongly integral hypergroups and ultragroups, testing equivalence of group extensions, and computing the component parts of the cohomology groups of both group extensions and a generalization of simplicial complexes, amongst other problems. For each of those listed, we also show that no classical algorithm can achieve similar efficiency under standard cryptographic assumptions.
by Kevin C. Zatloukal.
Ph. D.
Barker, Russell. „L#kappa#-equivalence and Hanf functions for finite structures“. Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270249.
Der volle Inhalt der QuelleTsui, Ho-yu. „Families of polarized abelian varieties and a construction of Kähler metrics of negative holomorphic bisectional curvature on Kodaira surfaces“. Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B37053760.
Der volle Inhalt der QuelleTsui, Ho-yu, und 徐浩宇. „Families of polarized abelian varieties and a construction of Kähler metrics of negative holomorphic bisectional curvature on Kodairasurfaces“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B37053760.
Der volle Inhalt der QuelleHossain, Akash. „Forking in valued fields and related structures“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM019.
Der volle Inhalt der QuelleThis thesis is a contribution to the model theory of valued fields. We study forking in valued fields and some of their reducts. We focus particularly on pseudo-local fields, the ultraproducts of residue characteristic zero of the p-adic valued fields. First, we look at the value groups of the valued fields we are interested in, the regular ordered Abelian groups. We establish for these ordered groups a geometric description of forking, as well as a full classification of the global extensions of a given type which are non-forking or invariant. Then, we prove an Ax-Kochen-Ershov principle for forking and dividing in expansions of pure short exact sequences of Abelian structures, as studied by Aschenbrenner-Chernikov-Gehret-Ziegler in their article about distality. This setting applies in particular to the leading-term structure of (expansions of) valued fields. Lastly, we give various sufficient conditions for a parameter set in a Henselian valued field of residue characteristic zero to be an extension base. In particular, we show that forking equals dividing in pseudo-local of residue characteristic zero. Additionally, we discuss results by Ealy-Haskell-Simon on forking in separated extensions of Henselian valued fields of residue characteristic zero. We contribute to the question in the setting of Abhyankar extensions, where we show that, with some additional conditions, if a type in a pseudo-local field does not fork, then there exists some global invariant Keisler measure whose support contains that type. This behavior is well-known in pseudo-finite fields
Kuroda, Kunihiko. „Abelian conformal field theory with level structure“. 京都大学 (Kyoto University), 2007. http://hdl.handle.net/2433/136737.
Der volle Inhalt der QuelleMilliet, Cédric. „Propriétés algébriques des structures menues ou minces, rang de Cantor Bendixson, espaces topologiques généralisés“. Phd thesis, Université Claude Bernard - Lyon I, 2009. http://tel.archives-ouvertes.fr/tel-00442772.
Der volle Inhalt der QuelleKing, Malcolm Bruce. „A structure theorem for asymptotically abelian W*-dynamical systems“. Diss., University of Pretoria, 2016. http://hdl.handle.net/2263/60817.
Der volle Inhalt der QuelleDissertation (MSc)--University of Pretoria, 2016.
Mathematics and Applied Mathematics
MSc
Unrestricted
Mo, Sjur. „Phase structure and critical properties of an abelian gauge theory“. Doctoral thesis, Norwegian University of Science and Technology, Department of Physics, 2002. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-443.
Der volle Inhalt der QuelleChapter 1 to 4 give a short introduction to superconductivity, microscopic theory, phase transitions, and Monte-Carlo simulations. Chapter 2 is about Cooper pairing in different settings, but I also give a short introduction to the Hofstadter problem of lattice fermions on a square lattice in a perpendicular magnetic field. The purpose is to clarify some points in Paper-I. Chapter 3 is about phase transitions, and introduces the important concepts of spontaneous symmetry breaking, scaling, and renormalization. In the last section I stress some of the main differences between first order and second order phase transitions. Chapter 4 starts with a short elementary introduction to Monte-Carlo simulations and proceeds with the important, but somewhat more advanced topic of reweighting.
Chapter 5 to 7 are more closely related to the specific projects I have worked on, and are meant to illuminate and clarify some aspects in Paper-II and Paper-III. Chapter 5 introduce the Ginzburg-Landau model in various parametrizations, present some perturbative (mean-field) results, and introduce the concept of topological defects (vortices) and duality.
Chapter 6 is closely related to Paper-II and introduce the concept of fractal dimension and the relation between the vortex excitations of the original theory and the dual field theory. Chapter 7 is closely related to Paper-III where we studied the order of the metal to superconductor phase transition. To do this we had to do infinite volume and continuum limit extrapolations. We also had to consider ultraviolet renormalization since the Ginzburg-Landau theory is a continuum field theory with no inherent short scale cut-off. To reduce auto-correlation times we added several improvements to the standard Metropolis algorithm in the Monte-Carlo simulations, the most important being an overrelaxation algorithm for the scalar field and a global update of the scalar amplitude.
Bücher zum Thema "Abelian structures"
Borceux, Francis. Handbook of categorical algebra 2: Categories and structures. Cambridge [England]: Cambridge University Press, 1994.
Den vollen Inhalt der Quelle findenMarszałek, Roman. Galois module structure of the group of units of real Abelian fields. Opole: Wydawnictwo Uniwersytetu Opolskiego, 2011.
Den vollen Inhalt der Quelle findenHeyer, Herbert. Structural aspects in the theory of probability. 2. Aufl. New Jersey: World Scientific, 2009.
Den vollen Inhalt der Quelle findenPantev, Tony. Stacks and catetories in geometry, topology, and algebra: CATS4 Conference Higher Categorical Structures and Their Interactions with Algebraic Geometry, Algebraic Topology and Algebra, July 2-7, 2012, CIRM, Luminy, France. Providence, Rhode Island: American Mathematical Society, 2015.
Den vollen Inhalt der Quelle findenClay Mathematics Institute Workshop on Moduli Spaces of Vector Bundles, with a View toward Coherent Sheaves (2006 Cambridge, Mass.). Grassmannians, moduli spaces, and vector bundles: Clay Mathematics Institute Workshop on Moduli Spaces of Vector Bundles, with a View towards Coherent Sheaves, October 6-11, 2006, Cambridge, Massachusetts. Herausgegeben von Ellwood D. (David) 1966- und Previato Emma. Providence, RI: American Mathematical Society, 2011.
Den vollen Inhalt der Quelle findenJ, Sally Paul. Fundamentals of mathematical analysis. Providence, Rhode Island: American Mathematical Society, 2013.
Den vollen Inhalt der Quelle findenSimon, Barry. Operator theory. Providence, Rhode Island: American Mathematical Society, 2015.
Den vollen Inhalt der Quelle findenLoth, Peter, und Carol Jacoby. Abelian Groups: Structures and Classifications. De Gruyter, Inc., 2019.
Den vollen Inhalt der Quelle findenLoth, Peter, und Carol Jacoby. Abelian Groups: Structures and Classifications. de Gruyter GmbH, Walter, 2019.
Den vollen Inhalt der Quelle findenLoth, Peter, und Carol Jacoby. Abelian Groups: Structures and Classifications. de Gruyter GmbH, Walter, 2019.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Abelian structures"
Adler, Allan, und Sundararaman Ramanan. „Theta structures and the addition formula“. In Moduli of Abelian Varieties, 31–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0093663.
Der volle Inhalt der QuelleŠťovíček, Jan. „Abelian Model Structures and Applications“. In Trends in Mathematics, 155–59. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45441-2_27.
Der volle Inhalt der QuelleDvurečenskij, Anatolij, und Sylvia Pulmannová. „Quotients of Partial Abelian Monoids“. In New Trends in Quantum Structures, 191–229. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-2422-7_4.
Der volle Inhalt der QuelleMoonen, Ben. „Group Schemes with Additional Structures and Weyl Group Cosets“. In Moduli of Abelian Varieties, 255–98. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8303-0_10.
Der volle Inhalt der QuelleMarra, Vincenzo, und Daniele Mundici. „MV-Algebras and Abelian l-Groups: a Fruitful Interaction“. In Ordered Algebraic Structures, 57–88. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3627-4_4.
Der volle Inhalt der QuelleLucas, F. „Some Applications of Definable Spine Analysis in Ordered Abelian Groups“. In Ordered Algebraic Structures, 123–28. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2472-7_10.
Der volle Inhalt der QuelleNikolić-Despotović, Danica, und Stevan Pilipović. „Abelian Theorem for the Distributional Stieltjes Transformation“. In Generalized Functions, Convergence Structures, and Their Applications, 139–46. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1055-6_13.
Der volle Inhalt der QuelleLurie, Jacob. „Full Level Structures on Elliptic Curves“. In p-adic Hodge Theory, Singular Varieties, and Non-Abelian Aspects, 239–52. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-21550-6_5.
Der volle Inhalt der QuelleAbu Zaid, F., E. Grädel, M. Grohe und W. Pakusa. „Choiceless Polynomial Time on Structures with Small Abelian Colour Classes“. In Mathematical Foundations of Computer Science 2014, 50–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44522-8_5.
Der volle Inhalt der QuelleDekimpe, Karel, und Paul Igodt. „Polynomial structures for iterated central extensions of abelian-by-nilpotent groups“. In Algebraic Topology: New Trends in Localization and Periodicity, 155–66. Basel: Birkhäuser Basel, 1996. http://dx.doi.org/10.1007/978-3-0348-9018-2_10.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Abelian structures"
Akhmedov, Emil T. „Non-Abelian structures in BSFT and RR couplings“. In STRING THEORY; 10th Tohwa University International Symposium on String Theory. AIP, 2002. http://dx.doi.org/10.1063/1.1454352.
Der volle Inhalt der QuelleVezzoni, Luigi, Carlos Herdeiro und Roger Picken. „Abelian complex structures on 2-step nilmanifolds and flat connections“. In XIX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS. AIP, 2011. http://dx.doi.org/10.1063/1.3599135.
Der volle Inhalt der QuelleItoh, Taichi, und Yoonbai Kim. „Fixed point structure of 3D abelian gauge theories“. In New directions in quantum chromodynamics. AIP, 1999. http://dx.doi.org/10.1063/1.1301677.
Der volle Inhalt der QuelleKrithivasan, Dinesh, und S. Sandeep Pradhan. „Distributed source coding using Abelian group codes: Extracting performance from structure“. In 2008 46th Annual Allerton Conference on Communication, Control, and Computing. IEEE, 2008. http://dx.doi.org/10.1109/allerton.2008.4797745.
Der volle Inhalt der QuelleAPPELQUIST, THOMAS, und L. C. R. WIJEWARDHANA. „PHASE STRUCTURE OF NON-COMPACT QED3 AND THE ABELIAN HIGGS MODEL“. In Proceedings of the 3rd International Symposium. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702340_0022.
Der volle Inhalt der Quelle