Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „4D cell culture“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "4D cell culture" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "4D cell culture"
Hilderbrand, Amber M., Elisa M. Ovadia, Matthew S. Rehmann, Prathamesh M. Kharkar, Chen Guo und April M. Kloxin. „Biomaterials for 4D stem cell culture“. Current Opinion in Solid State and Materials Science 20, Nr. 4 (August 2016): 212–24. http://dx.doi.org/10.1016/j.cossms.2016.03.002.
Der volle Inhalt der QuelleNies, Cordula, Tobias Rubner, Hanna Lorig, Vera Colditz, Helen Seelmann, Andreas Müller und Eric Gottwald. „A Microcavity Array-Based 4D Cell Culture Platform“. Bioengineering 6, Nr. 2 (31.05.2019): 50. http://dx.doi.org/10.3390/bioengineering6020050.
Der volle Inhalt der QuelleMiao, Shida, Haitao Cui, Timothy Esworthy, Bhushan Mahadik, Se‐jun Lee, Xuan Zhou, Sung Yun Hann, John P. Fisher und Lijie Grace Zhang. „4D Self‐Morphing Culture Substrate for Modulating Cell Differentiation“. Advanced Science 7, Nr. 6 (März 2020): 1902403. http://dx.doi.org/10.1002/advs.201902403.
Der volle Inhalt der QuelleZheng, Yijun, Mitchell Kim Liong Han, Qiyang Jiang, Bin Li, Jun Feng und Aránzazu del Campo. „4D hydrogel for dynamic cell culture with orthogonal, wavelength-dependent mechanical and biochemical cues“. Materials Horizons 7, Nr. 1 (2020): 111–16. http://dx.doi.org/10.1039/c9mh00665f.
Der volle Inhalt der QuelleMiao, Shida, Haitao Cui, Timothy Esworthy, Bhushan Mahadik, Se‐jun Lee, Xuan Zhou, Sung Yun Hann, John P. Fisher und Lijie Grace Zhang. „Programmable Culture Substrates: 4D Self‐Morphing Culture Substrate for Modulating Cell Differentiation (Adv. Sci. 5/2020)“. Advanced Science 7, Nr. 6 (März 2020): 2070034. http://dx.doi.org/10.1002/advs.202070034.
Der volle Inhalt der QuelleYang, Chen, Jeffrey Luo, Marianne Polunas, Nikola Bosnjak, Sy‐Tsong Dean Chueng, Michelle Chadwick, Hatem E. Sabaawy, Shawn A. Chester, Ki‐Bum Lee und Howon Lee. „4D‐Printed Transformable Tube Array for High‐Throughput 3D Cell Culture and Histology“. Advanced Materials 32, Nr. 40 (31.08.2020): 2004285. http://dx.doi.org/10.1002/adma.202004285.
Der volle Inhalt der QuelleSuvannasankha, Attaya, Colin D. Crean, Douglas R. Tompkins, Jesus Delgado-Calle, Teresita M. Bellido, G. David Roodman und John M. Chirgwin. „Regulation of Osteoblast Function in Myeloma Bone Disease By Semaphorin 4D“. Blood 128, Nr. 22 (02.12.2016): 4439. http://dx.doi.org/10.1182/blood.v128.22.4439.4439.
Der volle Inhalt der QuelleBurgstaller, Gerald, Sarah Vierkotten, Michael Lindner, Melanie Königshoff und Oliver Eickelberg. „Multidimensional immunolabeling and 4D time-lapse imaging of vital ex vivo lung tissue“. American Journal of Physiology-Lung Cellular and Molecular Physiology 309, Nr. 4 (15.08.2015): L323—L332. http://dx.doi.org/10.1152/ajplung.00061.2015.
Der volle Inhalt der QuelleAngelats Lobo und Ginestra. „Cell Bioprinting: The 3D-Bioplotter™ Case“. Materials 12, Nr. 23 (02.12.2019): 4005. http://dx.doi.org/10.3390/ma12234005.
Der volle Inhalt der QuelleGerner, E. W., P. S. Mamont, A. Bernhardt und M. Siat. „Post-translational modification of the protein-synthesis initiation factor eIF-4D by spermidine in rat hepatoma cells“. Biochemical Journal 239, Nr. 2 (15.10.1986): 379–86. http://dx.doi.org/10.1042/bj2390379.
Der volle Inhalt der QuelleDissertationen zum Thema "4D cell culture"
Hahn, Franziska. „Échafaudages microporeux et électroactifs 4D comme plateforme innovante de culture cellulaire“. Electronic Thesis or Diss., CY Cergy Paris Université, 2024. http://www.theses.fr/2024CYUN1333.
Der volle Inhalt der QuelleIn vivo, cells are situated within a 3D porous and dynamic microenvironment that provides biochemical and biophysical cues as well as dynamic signals influencing cell behavior across physiological and pathological contexts. To better replicate these conditions in vitro for applications in fundamental cell biology, tissue engineering, and drug screening this thesis presents the development of 4D electroactive scaffolds, combining a 3D passive microporous polyHIPE architecture and an electroactive polymer, PEDOT. These scaffolds serve as a dynamic cell culture platform capable to deliver electromechanical stimulation. The study first focused on the synthesis and characterization of electroactive polyHIPE-PEDOT scaffolds, which demonstrated a highly porous (10 to 100 µm) and interconnective structure beneficial for rapid cell colonization. Notably, these scaffolds could undergo volumetric changes in response to electrical stimulation. The second part of this work focused the polyHIPE-PEDOT scaffolds were found to be suitable for cell culture applications. The scaffolds were found to be cytocompatible, supporting cell adhesion, migration and proliferation. Cells within the scaffold adopted a spindle-like cell morphology typical of 3D cell microenvironments and synthesized fibronectin, an extracellular matrix protein essential for cell-matrix interactions. In the third part of this thesis, an electromechanical stimulation device suitable for in vitro cell culture studies (6-well cell culture plate) and live cell imaging (glass bottomed petri dish) was developed. A stimulation protocol was established and did not induce acute cytotoxic effects. After stimulation, cells exhibited heterogenic cell morphology, however, remained spread within the porous structure of the scaffold. Different live cell probes allowed the real-time monitoring of the cell dynamics during electromechanical stimulation. Furthermore, the stimulated cells exhibited different cytokine profile compared to non-stimulated cells. Thus, this thesis demonstrated the proof of concept of the electroactive polyHIPE-PEDOT scaffold as a tool for 4D cell culture and for future mechanobiological studies
Buchteile zum Thema "4D cell culture"
Seynhaeve, Ann L. B., und Timo L. M. ten Hagen. „An In Vivo Model to Study Cell Migration in XYZ-T Dimension Followed by Whole-Mount Re-evaluation“. In Cell Migration in Three Dimensions, 325–41. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2887-4_19.
Der volle Inhalt der QuelleArkenberg, Matthew R., Min Hee Kim und Chien-Chi Lin. „Click Hydrogels for Biomedical Applications“. In Multicomponent Hydrogels, 155–91. The Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/bk9781837670055-00155.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "4D cell culture"
Ji, Kyungmin, Zhiguo Zhao, Kamiar Moin, Yong Xu und Bonnie F. Sloane. „Abstract B65: Live-cell imaging of 3D/4D parallel co-cultures of breast carcinoma cells and breast fibroblasts in tissue architecture and microenvironment engineering (TAME) chambers“. In Abstracts: AACR Special Conference: Advances in Breast Cancer; October 17-20, 2015; Bellevue, WA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1557-3125.advbc15-b65.
Der volle Inhalt der QuelleMishra, Dhruva Kumar, Michael J. Thrall, Jonathan M. Kurie und Min P. Kim. „Abstract B31: Lung fibroblast enhances MMP-1 secretion when co-cultured with human lung cancer cells in the 4D lung cancer model“. In Abstracts: AACR Special Conference on Cellular Heterogeneity in the Tumor Microenvironment; February 26 — March 1, 2014; San Diego, CA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.chtme14-b31.
Der volle Inhalt der Quelle