Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „3D vibrometry“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "3D vibrometry" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "3D vibrometry"
Breaban, Florin, Roger Debuchy und Didier Defer. „Laser Scanning Vibrometry and Holographic Interferometry Applied to Vibration Study“. Applied Mechanics and Materials 801 (Oktober 2015): 303–11. http://dx.doi.org/10.4028/www.scientific.net/amm.801.303.
Der volle Inhalt der QuelleOrta, Adil Han, Mathias Kersemans und Koen Van Den Abeele. „On the Identification of Orthotropic Elastic Stiffness Using 3D Guided Wavefield Data“. Sensors 22, Nr. 14 (15.07.2022): 5314. http://dx.doi.org/10.3390/s22145314.
Der volle Inhalt der QuelleParikesit, Gea O. F., und Indraswari Kusumaningtyas. „How to use 3D shadows for simple microscopy and vibrometry“. Physics Education 52, Nr. 4 (13.06.2017): 045026. http://dx.doi.org/10.1088/1361-6552/aa74aa.
Der volle Inhalt der QuelleGrigg, S., M. Pearson, R. Marks, C. Featherston und R. Pullin. „Assessment of Damage Detection in Composite Structures Using 3D Vibrometry“. Journal of Physics: Conference Series 628 (09.07.2015): 012101. http://dx.doi.org/10.1088/1742-6596/628/1/012101.
Der volle Inhalt der QuelleWeekes, Ben, und David Ewins. „Multi-frequency, 3D ODS measurement by continuous scan laser Doppler vibrometry“. Mechanical Systems and Signal Processing 58-59 (Juni 2015): 325–39. http://dx.doi.org/10.1016/j.ymssp.2014.12.022.
Der volle Inhalt der QuelleMarks, Ryan, Clare Gillam, Alastair Clarke, Joe Armstrong und Rhys Pullin. „Damage detection in a composite wind turbine blade using 3D scanning laser vibrometry“. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 231, Nr. 16 (06.12.2016): 3024–41. http://dx.doi.org/10.1177/0954406216679612.
Der volle Inhalt der QuelleSokołowski, Jacek, Adam Orłowski, Robert Bartoszewicz, Magdalena Lachowska, Alicja Gosiewska, Przemyslaw Biecek und Kazimierz Niemczyk. „Quantitative analysis of 3D-printed custom ossicular prostheses motion using laser Doppler vibrometry“. Otolaryngologia Polska 77, Nr. 6 (29.02.2024): 23–30. http://dx.doi.org/10.5604/01.3001.0053.9038.
Der volle Inhalt der QuelleDerusova, Daria A., Vladimir P. Vavilov, Nikolay V. Druzhinin, Victor Y. Shpil’noi und Alexey N. Pestryakov. „Detecting Defects in Composite Polymers by Using 3D Scanning Laser Doppler Vibrometry“. Materials 15, Nr. 20 (14.10.2022): 7176. http://dx.doi.org/10.3390/ma15207176.
Der volle Inhalt der QuelleMarks, Ryan, Alastair Clarke, Carol Featherston, Christophe Paget und Rhys Pullin. „Lamb Wave Interaction with Adhesively Bonded Stiffeners and Disbonds Using 3D Vibrometry“. Applied Sciences 6, Nr. 1 (07.01.2016): 12. http://dx.doi.org/10.3390/app6010012.
Der volle Inhalt der QuelleCrua, Cyril, und Morgan R. Heikal. „Time-resolved fuel injector flow characterisation based on 3D laser Doppler vibrometry“. Measurement Science and Technology 25, Nr. 12 (29.10.2014): 125301. http://dx.doi.org/10.1088/0957-0233/25/12/125301.
Der volle Inhalt der QuelleDissertationen zum Thema "3D vibrometry"
Bouzzit, Aziz. „Ellipsométrie acoustique pour le suivi et la caractérisation de matériaux complexes“. Electronic Thesis or Diss., CY Cergy Paris Université, 2024. http://www.theses.fr/2024CYUN1304.
Der volle Inhalt der QuelleComplex materials are at the heart of major societal challenges in most major fields such as energy, transport, environment, heritage conservation/restoration, health and safety. Because of the opportunities for innovation offered in terms of features, these materials are giving rise to new problems of multi-physical and multi-scale analysis and understanding. The same applies to the instrumentation needed to characterize them.Acoustic methods, which are widely used in the non-destructive characterization of complex media, make use of the propagation properties of mechanical waves in these materials, which can be heterogeneous and anisotropic.In a multi-scale approach, the advantage of ultrasonic methods is that they are particularly sensitive to mechanical properties such as elasticity, rigidity and viscosity. The heterogeneous and multiphase nature of a complex medium thus leads to the notion of a viscoelastic medium, characterized by generalized complex Lamé coefficients (��∗, ��∗) and their variation as a function of frequency.The objective of this thesis is to develop a method for characterizing these complex viscoelastic materials that simultaneously measures the variation of the two generalized complex Lamé coefficients (��∗, ��∗) versus the frequency. The proposed approach is to follow, in space and in time, the propagation of the Rayleigh wave and to extract its ellipsometric parameters (ellipticity χ and orientation θ) in addition to the propagation parameters (k' and k'') conventionally determined. Based on the wave detection by 3D laser vibrometry at the surface of the complex material, and by means of 2D Gabor analysis in Quaternion space, the estimation of propagation and ellipsometric parameters gives access to the complete characterization of the complex material only by studying the interaction of a Rayleigh wave with the medium.The theoretical developments proposed in this work, together with experimental and simulation results, confirm the value of acoustic ellipsometry for characterizing these complex materials
Chia, Gomez Laura Piedad. „Elaboration et caractérisation de matériaux fonctionnels pour la stereolithographie biphotonique“. Thesis, Mulhouse, 2017. http://www.theses.fr/2017MULH9153.
Der volle Inhalt der QuelleThe two-photon stereolithography (TPS) technique is a micro-nanofabrication method based on photopolymerization by two-photon absorption that allows in a single manufacturing step to obtain complex 3D structures with high-resolution details (sub-100nm). Due to the specific conditions of TPS process (intense photon flux, spatial confinement of the photoreaction…) one of the main concerns today is the development of functional materials compatible with the TPS. According to the aforementioned, the general objective of this thesis was to develop new functional materials based on molecularly imprinted polymers (MIP) to elaborate chemical microsensors. In the first step of this work, different methods were implemented to characterize the geometrical, chemical and mechanical properties of the materials synthesized by TPS. For example, laser-Doppler vibrometry was used for first time to evaluate the mechanical properties of microstructures fabricated by TPS in a non-invasive way. In the second step, the characterization methodology was used to study the impact of the manufacturing process (i.e. photonic conditions) and the physicochemical parameters that affect the photoreaction (i.e. oxygen inhibition and the nature of the monomer) and the final properties of the materials. Finally, the obtained results enabled the prototyping of chemical microsensors based on MIP. Their molecular recognition properties and their selectivity were demonstrated for the molecule (D-L-Phe) by an optical and a mechanical sensing method
Langston, Paul Wesley. „Implementation and evaluation of a two-dimensional laser doppler vibrometer system for non-contact monitoring of external stress loading of aluminum samples“. Thesis, Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/33808.
Der volle Inhalt der QuelleAryan, Pouria. „A method for compensation of changing environmental and operational conditions for structural health monitoring using guided waves“. Thesis, 2016. http://hdl.handle.net/2440/101789.
Der volle Inhalt der QuelleThesis (Ph.D.) -- University of Adelaide, School of Mechanical Engineering, 2016.
Buchteile zum Thema "3D vibrometry"
Tilmann, Samuel. „Full Field Strain Measurements Using 3D Laser Vibrometry“. In Rotating Machinery, Optical Methods & Scanning LDV Methods, Volume 6, 105–12. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12935-4_12.
Der volle Inhalt der QuelleMacknelly, D. J., und P. R. Ind. „Component Qualification Using 3D Laser Vibrometry and Transmissibility Models“. In Experimental Techniques, Rotating Machinery, and Acoustics, Volume 8, 181–87. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15236-3_17.
Der volle Inhalt der QuelleTatar, Kourosh, Erik Olsson und Fredrik Forsberg. „Tomographic Reconstruction of 3D Ultrasound Fields Measured Using Laser Vibrometry“. In Experimental Analysis of Nano and Engineering Materials and Structures, 337–38. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6239-1_167.
Der volle Inhalt der QuelleRenaud, Franck, Stefania Lo Feudo und Jean-Luc Dion. „Measuring 3D Vibrations Amplitude with a Single Camera and a Model of the Vibrating Structure“. In Computer Vision & Laser Vibrometry, Volume 6, 63–68. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-34910-2_8.
Der volle Inhalt der QuelleAlkady, Khalid, Christine E. Wittich und Richard L. Wood. „A Novel Framework for the Dynamic Characterization of Civil Structures Using 3D Terrestrial Laser Scanners“. In Computer Vision & Laser Vibrometry, Volume 6, 91–95. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-34910-2_11.
Der volle Inhalt der QuelleWitt, Bryan, und Brandon Zwink. „Pushing 3D Scanning Laser Doppler Vibrometry to Capture Time Varying Dynamic Characteristics“. In Rotating Machinery, Vibro-Acoustics & Laser Vibrometry, Volume 7, 111–21. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74693-7_11.
Der volle Inhalt der QuelleMallareddy, Tarun Teja, Daniel J. Alarcón, Sarah Schneider und Peter G. Blaschke. „The Influence of Geometrical Correlation in Modal Validation Using Automated 3D Metrology“. In Rotating Machinery, Vibro-Acoustics & Laser Vibrometry, Volume 7, 239–44. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74693-7_23.
Der volle Inhalt der QuelleChen, Da-Ming, und W. D. Zhu. „Rapid and Dense 3D Vibration Measurement by Three Continuously Scanning Laser Doppler Vibrometers“. In Rotating Machinery, Vibro-Acoustics & Laser Vibrometry, Volume 7, 19–29. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74693-7_3.
Der volle Inhalt der QuelleYuan, Ke, und Weidong Zhu. „Modal Identification of a Turbine Blade with a Curved Surface Under Random Excitation by a 3D CSLDV System and the Extended Demodulation Method“. In Computer Vision & Laser Vibrometry, Volume 6, 127–39. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-34910-2_16.
Der volle Inhalt der QuelleRohe, Daniel P. „Strategies for Testing Large Aerospace Structures with 3D SLDV“. In Rotating Machinery, Hybrid Test Methods, Vibro-Acoustics & Laser Vibrometry, Volume 8, 1–12. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54648-3_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "3D vibrometry"
Taylor, Rayanne, und Jinki Kim. „Monitoring Volumetric Defects in 3D Bioprinting Using Video-Based Vibrometry“. In ASME 2023 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/smasis2023-117601.
Der volle Inhalt der QuelleSwenson, Eric D., Hoon Sohn, Steven E. Olson und Martin P. Desimio. „A comparison of 1D and 3D laser vibrometry measurements of Lamb waves“. In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, herausgegeben von Tribikram Kundu. SPIE, 2010. http://dx.doi.org/10.1117/12.847362.
Der volle Inhalt der QuelleOlsson, Erik, und Mikael Sjödahl. „3D Selective Imaging of Sound Sources in Air from 1D Laser Vibrometry Measurements“. In Digital Holography and Three-Dimensional Imaging. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/dh.2009.jtub6.
Der volle Inhalt der QuelleWeekes, B., D. Ewins und F. Acciavatti. „Continuous-scanning laser Doppler vibrometry: Extensions to arbitrary areas, multi-frequency and 3D capture“. In 11TH INTERNATIONAL CONFERENCE ON VIBRATION MEASUREMENTS BY LASER AND NONCONTACT TECHNIQUES - AIVELA 2014: Advances and Applications. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4879604.
Der volle Inhalt der QuelleBouzzit, A., A. Arciniegas, L. Martinez, S. Serfaty und N. Wilkie-Chancellier. „Ultrasonic surface wave parameters monitoring using 3D vibrometry and ellipsometry for local material characterization“. In 10th Convention of the European Acoustics Association Forum Acusticum 2023. Turin, Italy: European Acoustics Association, 2022. http://dx.doi.org/10.61782/fa.2023.0815.
Der volle Inhalt der QuelleBarnoncel, David, Wieslaw J. Staszewski, Jochen Schell und Patrick Peres. „Damage detection in reusable launch vehicle components using guided ultrasonic waves and 3D laser vibrometry“. In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, herausgegeben von Tribikram Kundu. SPIE, 2013. http://dx.doi.org/10.1117/12.2009846.
Der volle Inhalt der QuellePedrini, Giancarlo, Staffan Schedin und Hans J. Tiziani. „Combination of pulsed digital holography and laser vibrometry for the 3D measurements of vibrating objects“. In 4th International Conference on Vibration Measurement by Laser Techniques, herausgegeben von Enrico P. Tomasini. SPIE, 2000. http://dx.doi.org/10.1117/12.386721.
Der volle Inhalt der QuelleSchubert, L., M. Barth, T. Klesse, B. Köhler und B. Frankenstein. „Guided elastic waves and their impact interaction in CFRP structures characterized by 3D laser scanning vibrometry“. In The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, herausgegeben von Tribikram Kundu. SPIE, 2008. http://dx.doi.org/10.1117/12.777510.
Der volle Inhalt der QuelleHebaz, S. E., F. Agon, A. Bouzzit, H. Walaszek, R. Hodé, F. Zhang, S. Serfaty und N. Wilkie-Chancellier. „Longitudinal critically refracted wave for residual stress assessment on a welded plate using 3D laser vibrometry“. In 10th Convention of the European Acoustics Association Forum Acusticum 2023. Turin, Italy: European Acoustics Association, 2022. http://dx.doi.org/10.61782/fa.2023.1009.
Der volle Inhalt der QuelleAyers, J., C. T. Owens, K. C. Liu, E. Swenson, A. Ghoshal und V. Weiss. „Guided wave-based J-integral estimation for dynamic stress intensity factors using 3D scanning laser Doppler vibrometry“. In REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: VOLUME 32. AIP, 2013. http://dx.doi.org/10.1063/1.4789030.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "3D vibrometry"
Rohe, Daniel Peter. Documentation and Instructions for Running Two Python Scripts that Aid in Setting up 3D Measurements using the Polytec 3D Scanning Laser Doppler Vibrometer. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1213303.
Der volle Inhalt der QuelleBlecke, Jill, und Daniel Peter Rohe. NMSBA High Frequency Modal Analysis of a Solid Metal Cylinder using a Polytec 3D Scanning Laser Vibrometer. Office of Scientific and Technical Information (OSTI), Juni 2015. http://dx.doi.org/10.2172/1183948.
Der volle Inhalt der Quelle