Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „3D ultrasound localization icroscopy“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "3D ultrasound localization icroscopy" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "3D ultrasound localization icroscopy"
Krause, Cassandra, Daniel Wulff und Floris Ernst. „Target Tracking in 4D Ultrasound using Localization Networks“. Current Directions in Biomedical Engineering 10, Nr. 2 (14.09.2024): 29–32. http://dx.doi.org/10.1515/cdbme-2024-1059.
Der volle Inhalt der QuelleProvost, Jean. „Dynamic ultrasound localization microscopy“. Journal of the Acoustical Society of America 153, Nr. 3_supplement (01.03.2023): A28. http://dx.doi.org/10.1121/10.0018037.
Der volle Inhalt der QuelleChinnaiyan, Prakash, Wolfgang Tomé, Rakesh Patel, Rick Chappell und Mark Ritter. „3D-Ultrasound Guided Radiation Therapy in the Post-Prostatectomy Setting“. Technology in Cancer Research & Treatment 2, Nr. 5 (Oktober 2003): 455–58. http://dx.doi.org/10.1177/153303460300200511.
Der volle Inhalt der QuelleBandaru, Raja Sekhar, Anders Sørnes, Jan D'hooge und Eigil Samset. „2066135 3D Localization of Specular Reflections Using Volumetric Ultrasound“. Ultrasound in Medicine & Biology 41, Nr. 4 (April 2015): S56. http://dx.doi.org/10.1016/j.ultrasmedbio.2014.12.250.
Der volle Inhalt der QuelleZhong, Chunyan, Yanli Guo, Haiyun Huang, Liwen Tan, Yi Wu und Wenting Wang. „Three-Dimensional Reconstruction of Coronary Arteries and Its Application in Localization of Coronary Artery Segments Corresponding to Myocardial Segments Identified by Transthoracic Echocardiography“. Computational and Mathematical Methods in Medicine 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/783939.
Der volle Inhalt der QuelleYang, Xin, Yuhao Huang, Ruobing Huang, Haoran Dou, Rui Li, Jikuan Qian, Xiaoqiong Huang et al. „Searching collaborative agents for multi-plane localization in 3D ultrasound“. Medical Image Analysis 72 (August 2021): 102119. http://dx.doi.org/10.1016/j.media.2021.102119.
Der volle Inhalt der QuelleLiu, Xinyu, Jinhua Yu, Yuanyuan Wang und Ping Chen. „Automatic localization of the fetal cerebellum on 3D ultrasound volumes“. Medical Physics 40, Nr. 11 (10.10.2013): 112902. http://dx.doi.org/10.1118/1.4824058.
Der volle Inhalt der QuelleUherčík, Marián, Jan Kybic, Yue Zhao, Christian Cachard und Hervé Liebgott. „Line filtering for surgical tool localization in 3D ultrasound images“. Computers in Biology and Medicine 43, Nr. 12 (Dezember 2013): 2036–45. http://dx.doi.org/10.1016/j.compbiomed.2013.09.020.
Der volle Inhalt der QuelleYao, Junjie. „Deep-brain imaging with 3D integrated photoacoustic tomography and ultrasound localization microscopy“. Journal of the Acoustical Society of America 155, Nr. 3_Supplement (01.03.2024): A53. http://dx.doi.org/10.1121/10.0026774.
Der volle Inhalt der Quellevan der Burgt, Jeroen M. A., Saskia M. Camps, Maria Antico, Gustavo Carneiro und Davide Fontanarosa. „Arthroscope Localization in 3D Ultrasound Volumes Using Weakly Supervised Deep Learning“. Applied Sciences 11, Nr. 15 (25.07.2021): 6828. http://dx.doi.org/10.3390/app11156828.
Der volle Inhalt der QuelleDissertationen zum Thema "3D ultrasound localization icroscopy"
Abioui, Mourgues Myriam. „Dévelοppement d'un mοdèle préclinique chez la sοuris éveillée et stratégie thrοmbοlytique ciblée pοur l'AVC ischémique“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMC420.
Der volle Inhalt der QuelleIschemic stroke, caused by the obstruction of a cerebral artery, is one of the leading causes of mortality and disability worldwide. Despite the availability of treatments such as rtPA and endovascular thrombectomy, only a small percentage of patients have access to these. Moreover, despite substantial research efforts, challenges in translating results from animal models to human clinical trials limit the development of new therapies. This thesis presents a novel stroke model in awake mice to improve the translatability of preclinical studies. Through the use of functional ultrasound (fUS) and MRI, this model enables real-time assessment of hemodynamic parameters and functional recovery following ischemia. Additionally, we propose a new tool for evaluating post-stroke brain connectivity, providing insights into brain recovery and treatment response. The efficacy of the stantard thrombolytic treatment, rtPA, was evaluated, and an innovative targeted treatment approach was explored. The results underscore the potential of these multimodal imaging approaches and targeted therapies to enhance ischemic stroke management, opening new avenues for translational research
Uhercik, Marian. „Surgical tools localization in 3D ultrasound images“. Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00735702.
Der volle Inhalt der QuelleHeiles, Baptiste. „Microscopie par Localisation Ultrasonore en 3D“. Thesis, Paris Sciences et Lettres (ComUE), 2019. https://pastel.archives-ouvertes.fr/tel-02953081.
Der volle Inhalt der QuelleUltrasound Localization Microscopy has demonstrated the ability to overcome the penetration/resolution conundrum in ultrasound imaging thanks to high frame rate imaging and contrast agents. However, this approach will fall short in its clinical translation if its main disadvantages aren’t addressed: 1- long time of acquisition 2- limited two dimensional field of view 3- motion artifacts 4-data overdose and 5- data processing times. Developing 3D ULM will allow to explore entire volumes within a few minutes of acquisition, giving access to all blood vessels down to micrometer size and imaging moving organs (i.e. a patient in a clinical setting).The objective of this thesis was to perform, for the first time, volumetric ultrasound localization microscopy and unveil its potential in-vitro and in-vivo. For this purpose, I first developed new post-processing techniques, reducing 2D data processing times by a factor of 300, allowing implementation of ULM on 3D data and increasing image quality. Then, I implemented new ultrasound sequences and demonstrated that sub-wavelength features could be resolved in a tailor made wall-less phantom. I then demonstrated that 3D imaging of the rat brain microvasculature with blood flow velocimetry was achievable with micrometric resolution, and implemented 3D motion correction and image registration to provide whole brain imaging.This new tool was used to investigate both the anatomy and the vascularization mechanisms in the brain. Making the transition from 2D ULM to 3D ULM paves the way towards better imaging of in vivo organs in the rat. Thanks to technological improvements 3D ULM will spread fast in research imaging and reach all the way to clinical care
Zhao, Yue. „Biopsy needles localization and tracking methods in 3d medical ultrasound with ROI-RANSAC-KALMAN“. Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0015/document.
Der volle Inhalt der QuelleIn medical examinations and surgeries, minimally invasive technologies are getting used more and more often. Some specially designed surgical instruments, like biopsy needles, or electrodes are operated by radiologists or robotic systems and inserted in human’s body for extracting cell samples or delivering radiation therapy. To reduce the risk of tissue injury and facilitate the visual tracking, some medical vision assistance systems, as for example, ultrasound (US) systems can be used during the surgical procedure. We have proposed to use the 3D US to facilitate the visualization of the biopsy needle, however, due to the strong speckle noise of US images and the large calculation load involved as soon as 3D data are involved, it is a challenge to locate the biopsy needle accurately and to track its position in real time in 3D US. In order to solve the two main problems above, we propose a method based on the RANSAC algorithm and Kalman filter. In this method, a region of interest (ROI) has been limited to robustly localize and track the position of the biopsy needle in real time. The ROI-RK method consists of two steps: the initialization step and the tracking step. In the first step, a ROI initialization strategy using Hessian based line filter measurement is implemented. This step can efficiently reduce the speckle noise of the ultrasound volume, and enhance line-like structures as biopsy needles. In the second step, after the ROI is initialized, a tracking loop begins. The RK algorithm can robustly localize and track the biopsy needles in a dynamic situation. The RANSAC algorithm is used to estimate the position of the micro-tools and the Kalman filter helps to update the ROI and auto-correct the needle localization result. Because the ROI-RK method is involved in a dynamic situation, a motion estimation strategy is also implemented to estimate the insertion speed of the biopsy needle. 3D US volumes with inhomogeneous background have been simulated to evaluate the performance of the ROI-RK method. The method has been tested under different conditions, such as insertion orientations angles, and contrast ratio (CR). The localization accuracy is within 1 mm no matter what the insertion direction is. Only when the CR is very low, the proposed method could fail to track because of an incomplete ultrasound imaging of the needle. Another methodology, i.e. RANSAC with machine learning (ML) algorithm has been presented. This method aims at classifying the voxels not only depending on their intensities, but also using some structure features of the biopsy needle. The simulation results show that the RANSAC with ML algorithm can separate the needle voxels and background tissue voxels with low CR
Zarader, Pierre. „Transcranial ultrasound tracking of a neurosurgical microrobot“. Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS054.
Der volle Inhalt der QuelleWith the aim of treating brain tumors difficult to access with current surgical tools, Robeauté is developing an innovative microrobot to navigate deep brain areas with minimal invasiveness. The aim of this thesis was to develop and validate a transcranial ultrasound-based tracking system for the microrobot, in order to be able to implement robotic commands and thus guarantee both the safety and the effectiveness of the intervention.The proposed approach consists in positioning three ultrasound emitters on the patient's head, and embedding an ultrasound receiver on the microrobot. Knowing the speed of sound in biological tissue and the skull thickness crossed, it is possible to estimate the distances from the emitters to the receiver by time-of-flight measurements, and to deduce its 3D position by trilateration. A proof of concept was first carried out using a skull phantom of constant thickness, demonstrating submillimeter localization accuracy. The system was then evaluated using a calvaria phantom whose thickness and speed of sound in front of each emitter were deduced by CT scan. The system demonstrated an mean localization accuracy of 1.5 mm, i.e. a degradation in accuracy of 1 mm compared with the tracking through the skull phantom of constant thickness, explained by the uncertainty brought by the heterogeneous shape of the calvaria. Finally, three preclinical tests, without the possibility of assessing localization error, were carried out: (i) a post-mortem test on a human, (ii) a post-mortem test on a ewe, (iii) and an in vivo test on a ewe.Further improvements to the tracking system have been proposed, such as (i) the use of CT scan-based transcranial ultrasound propagation simulation to take account of skull heterogeneities, (ii) the miniaturization of the ultrasound sensor embedded in the microrobot, (iii) as well as the integration of ultrasound imaging to visualize local vascularization around the microrobot, thereby reducing the risk of lesions and detecting possible pathological angiogenesis
Buchteile zum Thema "3D ultrasound localization icroscopy"
Novotny, Paul M., Jeremy W. Cannon und Robert D. Howe. „Tool Localization in 3D Ultrasound Images“. In Lecture Notes in Computer Science, 969–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39903-2_127.
Der volle Inhalt der QuelleYeung, Pak-Hei, Moska Aliasi, Monique Haak, Weidi Xie und Ana I. L. Namburete. „Adaptive 3D Localization of 2D Freehand Ultrasound Brain Images“. In Lecture Notes in Computer Science, 207–17. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-16440-8_20.
Der volle Inhalt der QuelleSun, Shih-Yu, Matthew Gilbertson und Brian W. Anthony. „Probe Localization for Freehand 3D Ultrasound by Tracking Skin Features“. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014, 365–72. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10470-6_46.
Der volle Inhalt der QuelleHuang, Yuhao, Xin Yang, Rui Li, Jikuan Qian, Xiaoqiong Huang, Wenlong Shi, Haoran Dou et al. „Searching Collaborative Agents for Multi-plane Localization in 3D Ultrasound“. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, 553–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59716-0_53.
Der volle Inhalt der QuelleMohareri, Omid, Mahdi Ramezani, Troy Adebar, Purang Abolmaesumi und Septimiu Salcudean. „Automatic Detection and Localization of da Vinci Tool Tips in 3D Ultrasound“. In Information Processing in Computer-Assisted Interventions, 22–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30618-1_3.
Der volle Inhalt der QuelleMwikirize, Cosmas, John L. Nosher und Ilker Hacihaliloglu. „Local Phase-Based Learning for Needle Detection and Localization in 3D Ultrasound“. In Lecture Notes in Computer Science, 108–15. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67543-5_10.
Der volle Inhalt der QuelleDou, Haoran, Xin Yang, Jikuan Qian, Wufeng Xue, Hao Qin, Xu Wang, Lequan Yu et al. „Agent with Warm Start and Active Termination for Plane Localization in 3D Ultrasound“. In Lecture Notes in Computer Science, 290–98. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32254-0_33.
Der volle Inhalt der QuelleZou, Yuxin, Haoran Dou, Yuhao Huang, Xin Yang, Jikuan Qian, Chaojiong Zhen, Xiaodan Ji et al. „Agent with Tangent-Based Formulation and Anatomical Perception for Standard Plane Localization in 3D Ultrasound“. In Lecture Notes in Computer Science, 300–309. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-16440-8_29.
Der volle Inhalt der QuelleXu, Rong, Jun Ohya, Bo Zhang, Yoshinobu Sato und Masakatsu G. Fujie. „A Flexible Surgical Tool Localization Using a 3D Ultrasound Calibration System for Fetoscopic Tracheal Occlusion (FETO)“. In Clinical Image-Based Procedures. From Planning to Intervention, 17–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38079-2_3.
Der volle Inhalt der QuelleChen, Alvin I., Max L. Balter, Timothy J. Maguire und Martin L. Yarmush. „3D Near Infrared and Ultrasound Imaging of Peripheral Blood Vessels for Real-Time Localization and Needle Guidance“. In Lecture Notes in Computer Science, 388–96. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46726-9_45.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "3D ultrasound localization icroscopy"
Dencks, Stefanie, Nico Oblisz, Thomas Lisson und Georg Schmitz. „Achievable Localization Precision of Clinical 3D Ultrasound Localization Microscopy (ULM)“. In 2022 IEEE International Ultrasonics Symposium (IUS). IEEE, 2022. http://dx.doi.org/10.1109/ius54386.2022.9957160.
Der volle Inhalt der QuelleShahin, O., V. Martens, A. Besirevic, M. Kleemann und A. Schlaefer. „Localization of liver tumors in freehand 3D laparoscopic ultrasound“. In SPIE Medical Imaging, herausgegeben von David R. Holmes III und Kenneth H. Wong. SPIE, 2012. http://dx.doi.org/10.1117/12.912375.
Der volle Inhalt der QuelleBarva, Martin, Jan Kybic, Jean-Martial Mari, Christian Cachard und Vaclav Hlavac. „Automatic localization of curvilinear object in 3D ultrasound images“. In Medical Imaging, herausgegeben von William F. Walker und Stanislav Y. Emelianov. SPIE, 2005. http://dx.doi.org/10.1117/12.594763.
Der volle Inhalt der QuelleSchmauder, Michael, Steffen Zeiler, C. M. Gross, Juergen Waigand und Reinhold Orglmeister. „Automated 3D-stent localization from intravascular ultrasound image sequences“. In Medical Imaging 2000, herausgegeben von Kenneth M. Hanson. SPIE, 2000. http://dx.doi.org/10.1117/12.387656.
Der volle Inhalt der QuelleYounes, Hatem, Sandrine Voros und Jocelyne Troccaz. „Automatic needle localization in 3D ultrasound images for brachytherapy“. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE, 2018. http://dx.doi.org/10.1109/isbi.2018.8363787.
Der volle Inhalt der QuelleWang, Bingxue, Jipeng Yan, Kai Riemer, Matthieu Toulemonde, Joseph Hansen-Shearer und Meng-Xing Tang. „Comparison of localization methods for 3D Super-Resolution Ultrasound Imaging“. In 2022 IEEE International Ultrasonics Symposium (IUS). IEEE, 2022. http://dx.doi.org/10.1109/ius54386.2022.9957144.
Der volle Inhalt der QuelleHan, Wenzhao, Yuting Zhang, Yachuan Zhao, Anguo Luo und Bo Peng. „3D U-Net3+ Based Microbubble Filtering for Ultrasound Localization Microscopy“. In 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2023. http://dx.doi.org/10.1109/smc53992.2023.10394576.
Der volle Inhalt der QuelleWu Qiu, Mingyue Ding und Ming Yuchi. „Electrode Localization in 3D Ultrasound Images Using 3D Phase Grouping and Randomized Hough Transform“. In 2010 Fourth International Conference on Genetic and Evolutionary Computing (ICGEC 2010). IEEE, 2010. http://dx.doi.org/10.1109/icgec.2010.57.
Der volle Inhalt der QuelleSugimoto, Masanori, Noriyoshi Kanie, Shigeki Nakamura und Hiromichi Hashizume. „An accurate 3D localization technique using a single camera and ultrasound“. In 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE, 2012. http://dx.doi.org/10.1109/ipin.2012.6418874.
Der volle Inhalt der QuellePourtaherian, Arash, Nenad Mihajlovic, Farhad Ghazvinian Zanjani, Svitlana Zinger, Gary C. Ng, Hendrikus H. M. Korsten und Peter H. N. De With. „Localization of Partially Visible Needles in 3D Ultrasound Using Dilated CNNs“. In 2018 IEEE International Ultrasonics Symposium (IUS). IEEE, 2018. http://dx.doi.org/10.1109/ultsym.2018.8579986.
Der volle Inhalt der Quelle