Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „3D print materiál“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "3D print materiál" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "3D print materiál"
Kiński, Wojciech, und Paweł Pietkiewicz. „The concept of the material supply system in 3D printer using a wear FDM material“. Mechanik 91, Nr. 7 (09.07.2018): 543–45. http://dx.doi.org/10.17814/mechanik.2018.7.78.
Der volle Inhalt der QuelleCzerwiński, Maciej, und Mateusz Pasternak. „Use of 3D printing technology for planar antenna constructions“. Bulletin of the Military University of Technology 69, Nr. 1 (31.03.2020): 57–65. http://dx.doi.org/10.5604/01.3001.0014.2799.
Der volle Inhalt der QuelleHuber, Tim, Hossein Najaf Zadeh, Sean Feast, Thea Roughan und Conan Fee. „3D Printing of Gelled and Cross-Linked Cellulose Solutions; an Exploration of Printing Parameters and Gel Behaviour“. Bioengineering 7, Nr. 2 (27.03.2020): 30. http://dx.doi.org/10.3390/bioengineering7020030.
Der volle Inhalt der QuelleWawrek, I. „Building materials for 3D print“. IOP Conference Series: Materials Science and Engineering 867 (09.10.2020): 012047. http://dx.doi.org/10.1088/1757-899x/867/1/012047.
Der volle Inhalt der QuelleGeiger, R., S. Rommel, J. Burkhardt und T. Prof Bauernhansl. „Additiver Hybrid-Leichtbau – Highlight 3D print*/Additive Hybrid Lightweight Construction - Highlight 3D print“. wt Werkstattstechnik online 106, Nr. 03 (2016): 169–74. http://dx.doi.org/10.37544/1436-4980-2016-03-73.
Der volle Inhalt der QuellePristiansyah, Pristiansyah, Hasdiansah Hasdiansah und Sugiyarto Sugiyarto. „Optimasi Parameter Proses 3D Printing FDM Terhadap Akurasi Dimensi Menggunakan Filament Eflex“. Manutech : Jurnal Teknologi Manufaktur 11, Nr. 01 (31.07.2019): 33–40. http://dx.doi.org/10.33504/manutech.v11i01.98.
Der volle Inhalt der QuelleMilde, Ján, František Jurina, Jozef Peterka, Patrik Dobrovszký, Jakub Hrbál und Jozef Martinovič. „Influence of Part Orientation on the Surface Roughness in the Process of Fused Deposition Modeling“. Key Engineering Materials 896 (10.08.2021): 29–37. http://dx.doi.org/10.4028/www.scientific.net/kem.896.29.
Der volle Inhalt der QuelleDeneault, James R., Jorge Chang, Jay Myung, Daylond Hooper, Andrew Armstrong, Mark Pitt und Benji Maruyama. „Toward autonomous additive manufacturing: Bayesian optimization on a 3D printer“. MRS Bulletin 46, Nr. 7 (19.04.2021): 566–75. http://dx.doi.org/10.1557/s43577-021-00051-1.
Der volle Inhalt der QuelleBrookes, Ken. „3D Print Show“. Metal Powder Report 69, Nr. 1 (Januar 2014): 33–35. http://dx.doi.org/10.1016/s0026-0657(14)70030-x.
Der volle Inhalt der QuelleAi, Ju Mei, und Ping Du. „Discussion on 3D Print Model and Technology“. Applied Mechanics and Materials 543-547 (März 2014): 130–33. http://dx.doi.org/10.4028/www.scientific.net/amm.543-547.130.
Der volle Inhalt der QuelleDissertationen zum Thema "3D print materiál"
Kašpárková, Kristýna. „3D tisk kompozitních materiálů“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417454.
Der volle Inhalt der QuelleŠafl, Pavel. „Použití technologie 3D tisku pro návrh výroby náhradních dílů“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442437.
Der volle Inhalt der QuelleČerný, Martin. „Stanovení mechanických vlastností materiálů používaných pro 3D tisk“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-402542.
Der volle Inhalt der QuelleMudrák, Michal. „Analýza mechanických vlastností kompozitních materiálů vytisknutých aditivní technologií 3D tisku“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444288.
Der volle Inhalt der QuelleSears, Forest (Forest Orion). „3D print quality in the context of PLA color“. Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104320.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (page 45).
3D printing is a hot topic in manufacturing and a truly useful tool, but it has limitations. Print quality properties - like raft peelability, dimensional tolerance and surface roughness - are hard to calibrate perfectly. A common material used in fused deposition modeling (FDM) printers is polylactic acid (PLA). One print quality concern is how different colors of PLA print differently under the exact same settings. The inconsistency in print quality by color is bad for designers, students, and engineers who want to rapidly prototype effectively. Analyzing the thermal, chemical and mechanical properties of the different colors of PLA and relating it to the quality of the prints gives the user a chance to calibrate their machine effectively for higher quality prints. The quality of prints are quantified by scoring systems that measure three properties of a print: dimensional tolerance, how easily the raft peels from the print, and the surface roughness. The thermal properties of the different colors of PLA were analyzed using differential scanning calorimetry (DSC) up to 230° C. The integrals of peaks and troughs from the DSC - representing heat absorbed and released by the different colors of PLA - show that each color responds differently to thermal treatment. The mechanical strength of each color was found to be different through uniaxial tensile testing. Yellow and orange filament had high percent crystallinity at -12.1%, while having a high yield stress at 41-45 MPa, and a low yield strain at 6.6%-11% extension. Red and blue filament had low percent crystallinity at ~8.8-10.2%, while having a low yield stress at 33-36 MPa, and a high yield strain at 18%-23% extension. Additionally, Fourier transform infrared spectroscopy (FTIR) analysis determined each PLA color had unique additives. For calibrating printers for reliably high quality prints, crystallinity has a relationship with the amount of material extruded which could factor into qualities like dimensional tolerance and surface finish.
by Forest Sears.
S.B.
Tipton, Roger B. „Direct Print Additive Manufacturing of Optical Fiber Interconnects“. Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7651.
Der volle Inhalt der QuelleČáslavský, František. „Zkoušky vybraných vlastností materiálů pro 3D tisk“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-400683.
Der volle Inhalt der QuelleCarter, Justin B. „Vibration and Aeroelastic Prediction of Multi-Material Structures based on 3D-Printed Viscoelastic Polymers“. Miami University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=miami1627048967306654.
Der volle Inhalt der QuellePersson, Matilda. „Materializing“. Thesis, KTH, Arkitektur, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231952.
Der volle Inhalt der QuelleScully, Sean W. „Cameos For Modern Times“. Kent State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=kent1279137863.
Der volle Inhalt der QuelleBuchteile zum Thema "3D print materiál"
Wüthrich, Michael, Wilfried J. Elspass, Philip Bos und Simon Holdener. „Novel 4-Axis 3D Printing Process to Print Overhangs Without Support Material“. In Industrializing Additive Manufacturing, 130–45. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54334-1_10.
Der volle Inhalt der QuelleMao, Gang. „A Study of Bio-Computational Design in Terms of Enhancing Water Absorption by Method of Bionics Within the Architectural Fields“. In Proceedings of the 2021 DigitalFUTURES, 102–13. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5983-6_10.
Der volle Inhalt der QuelleYuan, Jiangping, Jieni Tian, Danyang Yao und Guangxue Chen. „Color Assessment of Paper-Based Color 3D Prints Using Layer-Specific Color 3D Test Charts“. In Advances in Graphic Communication, Printing and Packaging Technology and Materials, 123–31. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0503-1_20.
Der volle Inhalt der QuelleVan Der Putten, J., G. De Schutter und K. Van Tittelboom. „The Effect of Print Parameters on the (Micro)structure of 3D Printed Cementitious Materials“. In RILEM Bookseries, 234–44. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99519-9_22.
Der volle Inhalt der QuelleWang, Yi-Ta, und Yi-Ting Yeh. „Effect of Print Angle on Mechanical Properties of FDM 3D Structures Printed with POM Material“. In Lecture Notes in Mechanical Engineering, 157–67. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1771-1_20.
Der volle Inhalt der QuelleMalik, Fasih Munir, Syed Faiz Ali, Burak Bal und Emin Faruk Kececi. „Determination of Optimum Process Parameter Values in Additive Manufacturing for Impact Resistance“. In Additive Manufacturing Technologies From an Optimization Perspective, 221–34. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-9167-2.ch011.
Der volle Inhalt der QuelleBalasubramanian, K. R., V. Senthilkumar und Divakar Senthilvel. „Introduction to Additive Manufacturing“. In Advances in Civil and Industrial Engineering, 1–24. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-4054-1.ch001.
Der volle Inhalt der QuelleŁąpieś, Zuzanna, Przemysław Siemiński, Jarosław Mańkowski, Jakub Lipnicki, Łukasz Żrodowski, Piotr Żach, Michał Fotek und Łukasz Gołębiewski. „The Concept of Applying the Polyjet Matrix Incremental Technology to the Manufacture of Innovative Orthopaedic Corsets – Research and Analysis“. In Advances in Transdisciplinary Engineering. IOS Press, 2020. http://dx.doi.org/10.3233/atde200081.
Der volle Inhalt der QuelleFang, Edna Ho Chu, und Sameer Kumar. „The Trends and Challenges of 3D Printing“. In Encyclopedia of Information Science and Technology, Fourth Edition, 4382–89. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-2255-3.ch380.
Der volle Inhalt der QuelleFang, Edna Ho Chu, und Sameer Kumar. „The Trends and Challenges of 3D Printing“. In Advances in Environmental Engineering and Green Technologies, 415–23. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7359-3.ch028.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "3D print materiál"
McGrady, Garrett, und Kevin Walsh. „Dual Extrusion FDM Printer for Flexible and Rigid Polymers“. In ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8377.
Der volle Inhalt der QuelleDing, Houzhu, und Robert C. Chang. „Bioprinting of Liquid Hydrogel Precursors in a Support Bath by Analyzing Two Key Features: Cell Distribution and Shape Fidelity“. In ASME 2018 13th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/msec2018-6675.
Der volle Inhalt der QuelleGallant, Lucas, Amy Hsiao und Grant McSorley. „Benchmarking of print properties and microstructures of 316L stainless steel DMLS prints“. In HT2021. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.ht2021p0037.
Der volle Inhalt der QuelleDei Rossi, Joseph, Ozgur Keles und Vimal Viswanathan. „Fused Deposition Modeling With Added Vibrations: A Parametric Study on the Accuracy of Printed Parts“. In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11698.
Der volle Inhalt der QuelleChirico Scheele, Stefania, Martin Binks und Paul F. Egan. „Design and Manufacturing of 3D Printed Foods With User Validation“. In ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22462.
Der volle Inhalt der QuelleHeinrich, Andreas. „Can one 3D print a laser?“ In Organic Photonic Materials and Devices XXII, herausgegeben von Christopher E. Tabor, François Kajzar und Toshikuni Kaino. SPIE, 2020. http://dx.doi.org/10.1117/12.2547183.
Der volle Inhalt der QuelleLe, Xiaobin, Rami Akouri, Anthony Latassa, Brett Passemato und Ryan Wales. „Mechanical Property Testing and Analysis of 3D Printing Objects“. In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65067.
Der volle Inhalt der QuelleHalama, Radim, Marek Pagáč, Zbyněk Paška, Pavel Pavlíček und Xu Chen. „Ratcheting Behaviour of 3D Printed and Conventionally Produced SS316L Material“. In ASME 2019 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/pvp2019-93384.
Der volle Inhalt der QuelleRooney, Sean, und Kishore Pochiraju. „Simulations of Online Non-Destructive Acoustic Diagnosis of 3D-Printed Parts Using Air-Coupled Ultrasonic Transducers“. In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11101.
Der volle Inhalt der QuelleLai, Heather L., Cuiyu Kuang und Jared Nelson. „Modeling and Experimental Characterization of Viscoelastic 3D Printed Spring/Damper Systems“. In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71957.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "3D print materiál"
Al-Chaar, Ghassan K., Peter B. Stynoski, Todd S. Rushing, Lynette A. Barna, Jedadiah F. Burroughs, John L. Vavrin und Michael P. Case. Automated Construction of Expeditionary Structures (ACES) : Materials and Testing. Engineer Research and Development Center (U.S.), Februar 2021. http://dx.doi.org/10.21079/11681/39721.
Der volle Inhalt der QuelleVavrin, John L., Ghassan K. Al-Chaar, Eric L. Kreiger, Michael P. Case, Brandy N. Diggs, Richard J. Liesen, Justine Yu et al. Automated Construction of Expeditionary Structures (ACES) : Energy Modeling. Engineer Research and Development Center (U.S.), Februar 2021. http://dx.doi.org/10.21079/11681/39641.
Der volle Inhalt der QuelleDiggs, Brandy N., Richard J. Liesen, Michael P. Case, Sameer Hamoush und Ahmed C. Megri. Automated Construction of Expeditionary Structures (ACES) : Energy Modeling. Engineer Research and Development Center (U.S.), Februar 2021. http://dx.doi.org/10.21079/11681/39759.
Der volle Inhalt der Quelle