Zeitschriftenartikel zum Thema „3D foam electrodes“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "3D foam electrodes" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Siwek, K. I., S. Eugénio, I. Aldama, J. M. Rojo, J. M. Amarilla, A. P. C. Ribeiro, T. M. Silva und M. F. Montemor. „Tailored 3D Foams Decorated with Nanostructured Manganese Oxide for Asymmetric Electrochemical Capacitors“. Journal of The Electrochemical Society 169, Nr. 2 (01.02.2022): 020511. http://dx.doi.org/10.1149/1945-7111/ac4d66.
Der volle Inhalt der QuelleVainoris, Modestas, Henrikas Cesiulis und Natalia Tsyntsaru. „Metal Foam Electrode as a Cathode for Copper Electrowinning“. Coatings 10, Nr. 9 (25.08.2020): 822. http://dx.doi.org/10.3390/coatings10090822.
Der volle Inhalt der QuelleOehm, Jonas, Marc Kamlah und Volker Knoblauch. „Ultra-Thick Cathodes for High-Energy Lithium-Ion Batteries Based on Aluminium Foams—Microstructural Evolution during Densification and Its Impact on the Electrochemical Properties“. Batteries 9, Nr. 6 (31.05.2023): 303. http://dx.doi.org/10.3390/batteries9060303.
Der volle Inhalt der QuelleAnsari, Sajid Ali, Hicham Mahfoz Kotb und Mohamad M. Ahmad. „Wrinkle-Shaped Nickel Sulfide Grown on Three-Dimensional Nickel Foam: A Binder-Free Electrode Designed for High-Performance Electrochemical Supercapacitor Applications“. Crystals 12, Nr. 6 (25.05.2022): 757. http://dx.doi.org/10.3390/cryst12060757.
Der volle Inhalt der QuelleFerriday, Thomas B., Suhas Nuggehalli Sampathkumar, Peter Hugh Middleton, Jan Van Herle und Mohan Lal Kolhe. „How Acid Washing Nickel Foam Substrates Improves the Efficiency of the Alkaline Hydrogen Evolution Reaction“. Energies 16, Nr. 5 (21.02.2023): 2083. http://dx.doi.org/10.3390/en16052083.
Der volle Inhalt der QuelleArinova, Anar, und Arailym Nurpeissova. „Electrophoretic Deposition of Polyethylene Oxide-Based Gel-Polymer Electrolyte for 3D Lithium-Ion Batteries“. ECS Meeting Abstracts MA2023-02, Nr. 23 (22.12.2023): 3280. http://dx.doi.org/10.1149/ma2023-02233280mtgabs.
Der volle Inhalt der QuelleKim, Kookhan, Ji-Yong Eom, Jongmin Kim und Yang Soo Kim. „3D Lithium-Metal Anode for High-Energy Lithium-Metal Batteries“. ECS Meeting Abstracts MA2024-02, Nr. 7 (22.11.2024): 947. https://doi.org/10.1149/ma2024-027947mtgabs.
Der volle Inhalt der QuelleSliozberg, Kirill, Yauhen Aniskevich, Ugur Kayran, Justus Masa und Wolfgang Schuhmann. „CoFe–OH Double Hydroxide Films Electrodeposited on Ni-Foam as Electrocatalyst for the Oxygen Evolution Reaction“. Zeitschrift für Physikalische Chemie 234, Nr. 5 (26.05.2020): 995–1019. http://dx.doi.org/10.1515/zpch-2019-1466.
Der volle Inhalt der QuelleNawaz, Bushra, Ghulam Ali, Muhammad Obaid Ullah, Sarish Rehman und Fazal Abbas. „Investigation of the Electrochemical Properties of Ni0.5Zn0.5Fe2O4 as Binder-Based and Binder-Free Electrodes of Supercapacitors“. Energies 14, Nr. 11 (04.06.2021): 3297. http://dx.doi.org/10.3390/en14113297.
Der volle Inhalt der QuelleCheng, Guanhua, Qingguo Bai, Conghui Si, Wanfeng Yang, Chaoqun Dong, Hao Wang, Yulai Gao und Zhonghua Zhang. „Nickel oxide nanopetal-decorated 3D nickel network with enhanced pseudocapacitive properties“. RSC Advances 5, Nr. 20 (2015): 15042–51. http://dx.doi.org/10.1039/c4ra15556d.
Der volle Inhalt der QuelleChaudhari, Nitin K., Haneul Jin, Byeongyoon Kim und Kwangyeol Lee. „Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting“. Nanoscale 9, Nr. 34 (2017): 12231–47. http://dx.doi.org/10.1039/c7nr04187j.
Der volle Inhalt der QuelleYang, Wanfeng, Guanhua Cheng, Chaoqun Dong, Qingguo Bai, Xiaoting Chen, Zhangquan Peng und Zhonghua Zhang. „NiO nanorod array anchored Ni foam as a binder-free anode for high-rate lithium ion batteries“. J. Mater. Chem. A 2, Nr. 47 (2014): 20022–29. http://dx.doi.org/10.1039/c4ta04809a.
Der volle Inhalt der QuelleYadavalli, SIVA RAM PRASAD, Aravind Kumar Chandiran und Raghuram Chetty. „Electrochemically Deposited Tin on High Surface Area Copper Foam for Enhanced Electrochemical Reduction of CO2 to Formic Acid“. ECS Meeting Abstracts MA2022-01, Nr. 55 (07.07.2022): 2306. http://dx.doi.org/10.1149/ma2022-01552306mtgabs.
Der volle Inhalt der QuelleLi, Ruiqing, Chenyang Xu, Xiangfen Jiang, Yoshio Bando und Xuebin Wang. „Porous Monolithic Electrode of Ni3FeN on 3D Graphene for Efficient Oxygen Evolution“. Journal of Nanoscience and Nanotechnology 20, Nr. 8 (01.08.2020): 5175–81. http://dx.doi.org/10.1166/jnn.2020.18535.
Der volle Inhalt der QuelleSyah, Rahmad, Awais Ahmad, Afshin Davarpanah, Marischa Elveny, Dadan Ramdan, Munirah D. Albaqami und Mohamed Ouladsmane. „Incorporation of Bi2O3 Residuals with Metallic Bi as High Performance Electrocatalyst toward Hydrogen Evolution Reaction“. Catalysts 11, Nr. 9 (12.09.2021): 1099. http://dx.doi.org/10.3390/catal11091099.
Der volle Inhalt der QuelleLin, Xuehao, Hui Li, Farayi Musharavati, Erfan Zalnezhad, Sungchul Bae, Bum-Yean Cho und Oscar K. S. Hui. „Synthesis and characterization of cobalt hydroxide carbonate nanostructures“. RSC Adv. 7, Nr. 74 (2017): 46925–31. http://dx.doi.org/10.1039/c7ra09050a.
Der volle Inhalt der QuelleHao, Jian, Xiaoxu Liu, Na Li, Xusong Liu, Xiaoxuan Ma, Yi Zhang, Yao Li und Jiupeng Zhao. „Ionic liquid electrodeposition of 3D germanium–acetylene black–Ni foam nanocomposite electrodes for lithium-ion batteries“. RSC Adv. 4, Nr. 104 (2014): 60371–75. http://dx.doi.org/10.1039/c4ra10931g.
Der volle Inhalt der QuelleZhou, Li-Feng, Tao Du, Li-Ying Liu, Yi-Song Wang und Wen-Bin Luo. „A substrate surface alloy strategy for integrated sulfide electrodes for sodium ion batteries with superior lifespan“. Materials Advances 2, Nr. 15 (2021): 5062–66. http://dx.doi.org/10.1039/d1ma00363a.
Der volle Inhalt der QuelleSu, Lin, Guobing Ying, Lu Liu, Fengchen Ma, Kaicheng Zhang, Chen Zhang, Xiang Wang und Cheng Wang. „Ti3C2Tx on copper and nickel foams with improved electrochemical performance produced via solution processing for supercapacitor“. Processing and Application of Ceramics 12, Nr. 4 (2018): 366–73. http://dx.doi.org/10.2298/pac1804366s.
Der volle Inhalt der QuelleZhang, Lu, Derek DeArmond, Noe T. Alvarez, Daoli Zhao, Tingting Wang, Guangfeng Hou, Rachit Malik, William R. Heineman und Vesselin Shanov. „Beyond graphene foam, a new form of three-dimensional graphene for supercapacitor electrodes“. Journal of Materials Chemistry A 4, Nr. 5 (2016): 1876–86. http://dx.doi.org/10.1039/c5ta10031c.
Der volle Inhalt der QuelleRusso, Andrea, Jens Oluf Jensen, Mikkel Rykær Kraglund, Wenjing (Angela) Zhang und EunAe Cho. „Catalyst Application in Three-Dimensional Porous Electrodes for Alkaline Electrolysis“. ECS Meeting Abstracts MA2023-01, Nr. 36 (28.08.2023): 2006. http://dx.doi.org/10.1149/ma2023-01362006mtgabs.
Der volle Inhalt der QuelleZhang, Zheye, Kai Chi, Fei Xiao und Shuai Wang. „Advanced solid-state asymmetric supercapacitors based on 3D graphene/MnO2 and graphene/polypyrrole hybrid architectures“. Journal of Materials Chemistry A 3, Nr. 24 (2015): 12828–35. http://dx.doi.org/10.1039/c5ta02685g.
Der volle Inhalt der QuelleFan, Huiqing, Hexiang Di, Yanlei Bi, Ru Wang, Guangwu Wen und Lu-Chang Qin. „Facile synthesis of morphology-controlled hybrid structure of ZnCo2O4 nanosheets and nanowires for high-performance asymmetric supercapacitors“. RSC Advances 14, Nr. 1 (2024): 650–61. http://dx.doi.org/10.1039/d3ra07128f.
Der volle Inhalt der QuelleXia, Zhen Yuan, Meganne Christian, Catia Arbizzani, Vittorio Morandi, Massimo Gazzano, Vanesa Quintano, Alessandro Kovtun und Vincenzo Palermo. „A robust, modular approach to produce graphene–MOx multilayer foams as electrodes for Li-ion batteries“. Nanoscale 11, Nr. 12 (2019): 5265–73. http://dx.doi.org/10.1039/c8nr09195a.
Der volle Inhalt der QuelleLu, Yang-Ming, und Sheng-Huai Hong. „Preparation of Electrodes with β-Nickel Hydroxide/CVD-Graphene/3D-Nickel Foam Composite Structures to Enhance the Capacitance Characteristics of Supercapacitors“. Materials 17, Nr. 1 (20.12.2023): 23. http://dx.doi.org/10.3390/ma17010023.
Der volle Inhalt der QuelleTong, Yue, Xiaowen Yu und Gaoquan Shi. „Cobalt disulfide/graphite foam composite films as self-standing electrocatalytic electrodes for overall water splitting“. Physical Chemistry Chemical Physics 19, Nr. 6 (2017): 4821–26. http://dx.doi.org/10.1039/c6cp08176b.
Der volle Inhalt der QuelleCui, Kexin, Jincheng Fan, Songyang Li, Moukaila Fatiya Khadidja, Jianghong Wu, Mingyu Wang, Jianxin Lai, Hongguang Jin, Wenbin Luo und Zisheng Chao. „Three dimensional Ni3S2 nanorod arrays as multifunctional electrodes for electrochemical energy storage and conversion applications“. Nanoscale Advances 2, Nr. 1 (2020): 478–88. http://dx.doi.org/10.1039/c9na00633h.
Der volle Inhalt der QuelleMusa, Auwal M., Janice Kiely, Richard Luxton und Kevin C. Honeychurch. „Graphene-Based Electrodes for Monitoring of Estradiol“. Chemosensors 11, Nr. 6 (06.06.2023): 337. http://dx.doi.org/10.3390/chemosensors11060337.
Der volle Inhalt der QuelleMa, Yue, Xiangyang Song, Xiao Ge, Haimin Zhang, Guozhong Wang, Yunxia Zhang und Huijun Zhao. „In situ growth of α-Fe2O3 nanorod arrays on 3D carbon foam as an efficient binder-free electrode for highly sensitive and specific determination of nitrite“. Journal of Materials Chemistry A 5, Nr. 9 (2017): 4726–36. http://dx.doi.org/10.1039/c6ta10744c.
Der volle Inhalt der QuelleKumar, Rudra, Thiruvelu Bhuvana, Gargi Mishra und Ashutosh Sharma. „A polyaniline wrapped aminated graphene composite on nickel foam as three-dimensional electrodes for enzymatic microfuel cells“. RSC Advances 6, Nr. 77 (2016): 73496–505. http://dx.doi.org/10.1039/c6ra08195a.
Der volle Inhalt der QuelleVan Droogenbroek, Kevin, Christos Georgiadis und Joris Proost. „Towards Multiphase Modeling and Simulation of Alkaline Water Electrolysis through Pore-Resolved Foam Electrodes“. ECS Meeting Abstracts MA2023-01, Nr. 36 (28.08.2023): 1980. http://dx.doi.org/10.1149/ma2023-01361980mtgabs.
Der volle Inhalt der QuelleDeng, Ming-Jay, Cheng-Chia Wang, Pei-Jung Ho, Chih-Ming Lin, Jin-Ming Chen und Kueih-Tzu Lu. „Facile electrochemical synthesis of 3D nano-architectured CuO electrodes for high-performance supercapacitors“. J. Mater. Chem. A 2, Nr. 32 (2014): 12857–65. http://dx.doi.org/10.1039/c4ta02444c.
Der volle Inhalt der QuelleWang, Hai, Chen Qing, Junling Guo, A. A. Aref, Daming Sun, Bixiao Wang und Yiwen Tang. „Highly conductive carbon–CoO hybrid nanostructure arrays with enhanced electrochemical performance for asymmetric supercapacitors“. J. Mater. Chem. A 2, Nr. 30 (2014): 11776–83. http://dx.doi.org/10.1039/c4ta01132e.
Der volle Inhalt der QuelleWang, Feifei, Yanfang Zhu, Wen Tian, Xingbin Lv, Hualian Zhang, Zhufeng Hu, Yuxin Zhang, Junyi Ji und Wei Jiang. „Co-doped Ni3S2@CNT arrays anchored on graphite foam with a hierarchical conductive network for high-performance supercapacitors and hydrogen evolution electrodes“. Journal of Materials Chemistry A 6, Nr. 22 (2018): 10490–96. http://dx.doi.org/10.1039/c8ta03131b.
Der volle Inhalt der QuelleRupp, Rico, Nina Plankensteiner, Patrick Steegstra und Philippe M. Vereecken. „Electrodeposited 3D Nano-Porous High Surface Area Metal Electrodes for Electrocatalytic Cells“. ECS Meeting Abstracts MA2022-02, Nr. 24 (09.10.2022): 997. http://dx.doi.org/10.1149/ma2022-0224997mtgabs.
Der volle Inhalt der QuelleKalimuldina, Gulnur, Arailym Nurpeissova, Assyl Adylkhanova, Nurbolat Issatayev, Desmond Adair und Zhumabay Bakenov. „3D Hierarchical Nanocrystalline CuS Cathode for Lithium Batteries“. Materials 14, Nr. 7 (26.03.2021): 1615. http://dx.doi.org/10.3390/ma14071615.
Der volle Inhalt der QuelleMarimuthu, Sundaramoorthy, Ayyavu Shankar und Govindhan Maduraiveeran. „Porous-Structured Three-Dimensional Iron Phosphides Nanosheets for Enhanced Oxygen Evolution Reaction“. Energies 16, Nr. 3 (19.01.2023): 1124. http://dx.doi.org/10.3390/en16031124.
Der volle Inhalt der QuelleChen, Peng, und Michael Ruck. „A Stable Porous Aluminum Electrode with High Capacity for Rechargeable Lithium-Ion Batteries“. Batteries 9, Nr. 1 (04.01.2023): 37. http://dx.doi.org/10.3390/batteries9010037.
Der volle Inhalt der QuelleSurace, R., L. A. C. De Filippis, E. Niini, A. D. Ludovico und J. Orkas. „Morphological Investigation of Foamed Aluminum Parts Produced by Melt Gas Injection“. Advances in Materials Science and Engineering 2009 (2009): 1–9. http://dx.doi.org/10.1155/2009/506024.
Der volle Inhalt der QuelleLu, Yang-Ming, Yen-Ching Lin und Ting-Yi Liu. „Development of Nanoporous Nickel Oxide Materials as Electrodes for Supercapacitors“. Applied Functional Materials 3, Nr. 4 (30.12.2023): 16–20. http://dx.doi.org/10.35745/afm2023v03.04.0003.
Der volle Inhalt der QuellePatil, Umakant, Su Chan Lee, Sachin Kulkarni, Ji Soo Sohn, Min Sik Nam, Suhyun Han und Seong Chan Jun. „Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors“. Nanoscale 7, Nr. 16 (2015): 6999–7021. http://dx.doi.org/10.1039/c5nr01135c.
Der volle Inhalt der QuelleToufani, Maryam, Sibel Kasap, Ali Tufani, Feray Bakan, Stefan Weber und Emre Erdem. „Synergy of nano-ZnO and 3D-graphene foam electrodes for asymmetric supercapacitor devices“. Nanoscale 12, Nr. 24 (2020): 12790–800. http://dx.doi.org/10.1039/d0nr02028a.
Der volle Inhalt der QuelleKumar, Sumana, und Abha Misra. „Three-Dimensional Carbon Foam Based Asymmetric Assembly of Metal Oxides Electrodes for High-Performance Solid-State Micro-Supercapacitor“. ECS Meeting Abstracts MA2022-01, Nr. 1 (07.07.2022): 10. http://dx.doi.org/10.1149/ma2022-01110mtgabs.
Der volle Inhalt der QuellePatil, Supriya A., Pranav K. Katkar, Mosab Kaseem, Ghazanfar Nazir, Sang-Wha Lee, Harshada Patil, Honggyun Kim et al. „Cu@Fe-Redox Capacitive-Based Metal–Organic Framework Film for a High-Performance Supercapacitor Electrode“. Nanomaterials 13, Nr. 10 (09.05.2023): 1587. http://dx.doi.org/10.3390/nano13101587.
Der volle Inhalt der QuelleZhang, Lijuan, Zhonggui Quan, Yan Wang, Hangyang Li und Xu Yang. „Construction of Flower-like FeCo2O4 Nanosheets on Ni Foam as Efficient Electrocatalyst for Oxygen Evolution Reaction“. Coatings 13, Nr. 11 (31.10.2023): 1875. http://dx.doi.org/10.3390/coatings13111875.
Der volle Inhalt der QuelleChen, Wei-bin, Li-na Zhang, Zhi-jing Ji, Ya-dan Zheng, Shuang Yuan und Qiang Wang. „Self-Supported Bi2MoO6 Nanosheet Arrays as Advanced Integrated Electrodes for Li-Ion Batteries with Super High Capacity and Long Cycle Life“. Nano 13, Nr. 06 (Juni 2018): 1850066. http://dx.doi.org/10.1142/s1793292018500662.
Der volle Inhalt der QuelleXia, Qixun, Lijun Si, Keke Liu, Aiguo Zhou, Chen Su, Nanasaheb M. Shinde, Guangxin Fan und Jun Dou. „In Situ Preparation of Three-Dimensional Porous Nickel Sulfide as a Battery-Type Supercapacitor“. Molecules 28, Nr. 11 (24.05.2023): 4307. http://dx.doi.org/10.3390/molecules28114307.
Der volle Inhalt der QuelleManjakkal, Libu, Carlos García Núñez, Wenting Dang und Ravinder Dahiya. „Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes“. Nano Energy 51 (September 2018): 604–12. http://dx.doi.org/10.1016/j.nanoen.2018.06.072.
Der volle Inhalt der QuellePatil, Umakant M., Pranav K. Katkar, Supriya J. Marje, Chandrakant D. Lokhande und Seong C. Jun. „Hydrous nickel sulphide nanoparticle decorated 3D graphene foam electrodes for enhanced supercapacitive performance of an asymmetric device“. New Journal of Chemistry 42, Nr. 24 (2018): 20123–30. http://dx.doi.org/10.1039/c8nj04228d.
Der volle Inhalt der QuelleJin, Jing, Jie Ding, Xing Wang, Congcong Hong, Huaping Wu, Min Sun, Xiehong Cao, Congda Lu und Aiping Liu. „High mass loading flower-like MnO2 on NiCo2O4 deposited graphene/nickel foam as high-performance electrodes for asymmetric supercapacitors“. RSC Advances 11, Nr. 27 (2021): 16161–72. http://dx.doi.org/10.1039/d0ra10948g.
Der volle Inhalt der Quelle