Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „3D foam electrodes“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "3D foam electrodes" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "3D foam electrodes"
Siwek, K. I., S. Eugénio, I. Aldama, J. M. Rojo, J. M. Amarilla, A. P. C. Ribeiro, T. M. Silva und M. F. Montemor. „Tailored 3D Foams Decorated with Nanostructured Manganese Oxide for Asymmetric Electrochemical Capacitors“. Journal of The Electrochemical Society 169, Nr. 2 (01.02.2022): 020511. http://dx.doi.org/10.1149/1945-7111/ac4d66.
Der volle Inhalt der QuelleVainoris, Modestas, Henrikas Cesiulis und Natalia Tsyntsaru. „Metal Foam Electrode as a Cathode for Copper Electrowinning“. Coatings 10, Nr. 9 (25.08.2020): 822. http://dx.doi.org/10.3390/coatings10090822.
Der volle Inhalt der QuelleOehm, Jonas, Marc Kamlah und Volker Knoblauch. „Ultra-Thick Cathodes for High-Energy Lithium-Ion Batteries Based on Aluminium Foams—Microstructural Evolution during Densification and Its Impact on the Electrochemical Properties“. Batteries 9, Nr. 6 (31.05.2023): 303. http://dx.doi.org/10.3390/batteries9060303.
Der volle Inhalt der QuelleAnsari, Sajid Ali, Hicham Mahfoz Kotb und Mohamad M. Ahmad. „Wrinkle-Shaped Nickel Sulfide Grown on Three-Dimensional Nickel Foam: A Binder-Free Electrode Designed for High-Performance Electrochemical Supercapacitor Applications“. Crystals 12, Nr. 6 (25.05.2022): 757. http://dx.doi.org/10.3390/cryst12060757.
Der volle Inhalt der QuelleFerriday, Thomas B., Suhas Nuggehalli Sampathkumar, Peter Hugh Middleton, Jan Van Herle und Mohan Lal Kolhe. „How Acid Washing Nickel Foam Substrates Improves the Efficiency of the Alkaline Hydrogen Evolution Reaction“. Energies 16, Nr. 5 (21.02.2023): 2083. http://dx.doi.org/10.3390/en16052083.
Der volle Inhalt der QuelleArinova, Anar, und Arailym Nurpeissova. „Electrophoretic Deposition of Polyethylene Oxide-Based Gel-Polymer Electrolyte for 3D Lithium-Ion Batteries“. ECS Meeting Abstracts MA2023-02, Nr. 23 (22.12.2023): 3280. http://dx.doi.org/10.1149/ma2023-02233280mtgabs.
Der volle Inhalt der QuelleKim, Kookhan, Ji-Yong Eom, Jongmin Kim und Yang Soo Kim. „3D Lithium-Metal Anode for High-Energy Lithium-Metal Batteries“. ECS Meeting Abstracts MA2024-02, Nr. 7 (22.11.2024): 947. https://doi.org/10.1149/ma2024-027947mtgabs.
Der volle Inhalt der QuelleSliozberg, Kirill, Yauhen Aniskevich, Ugur Kayran, Justus Masa und Wolfgang Schuhmann. „CoFe–OH Double Hydroxide Films Electrodeposited on Ni-Foam as Electrocatalyst for the Oxygen Evolution Reaction“. Zeitschrift für Physikalische Chemie 234, Nr. 5 (26.05.2020): 995–1019. http://dx.doi.org/10.1515/zpch-2019-1466.
Der volle Inhalt der QuelleNawaz, Bushra, Ghulam Ali, Muhammad Obaid Ullah, Sarish Rehman und Fazal Abbas. „Investigation of the Electrochemical Properties of Ni0.5Zn0.5Fe2O4 as Binder-Based and Binder-Free Electrodes of Supercapacitors“. Energies 14, Nr. 11 (04.06.2021): 3297. http://dx.doi.org/10.3390/en14113297.
Der volle Inhalt der QuelleCheng, Guanhua, Qingguo Bai, Conghui Si, Wanfeng Yang, Chaoqun Dong, Hao Wang, Yulai Gao und Zhonghua Zhang. „Nickel oxide nanopetal-decorated 3D nickel network with enhanced pseudocapacitive properties“. RSC Advances 5, Nr. 20 (2015): 15042–51. http://dx.doi.org/10.1039/c4ra15556d.
Der volle Inhalt der QuelleDissertationen zum Thema "3D foam electrodes"
Adjez, Yanis. „Stimulation of Electrocatalytic Reduction of Nitrate by Immobilized Ionic Liquids“. Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS337.pdf.
Der volle Inhalt der QuelleNitrate pollution in water represents a significant environmental challenge and is one of the top ten most common water quality violations worldwide. This challenge offers an opportunity for the circular economy as nitrate electrolysis has been suggested as a sustainable method for valorization of nitrate-contaminated effluents by simultaneous decentralized ammonia production (a commodity chemical). In particular, the electrochemical reduction of nitrate (ERN) is a promising and sustainable strategy for addressing the critical issue of nitrate pollution in water sources. Several earth abundant materials such as copper and tin have been suggested as suitable electrocatalytic materials for ERN. Mostly fundamental electrochemical studies under potentiostatic conditions are reported so far. In contrast, this study presents ERN evaluation under galvanostatic conditions for achieving more representative operational conditions for larger engineered systems. However, this provokes the appearance of the concomitant hydrogen evolution reaction (HER), which takes place at a similar thermodynamic potential than ERN. Thus, faradaic efficiency for ERN significantly diminishes under realistic galvanostatic conditions due to the competition with HER. This project addresses this fundamental challenge in electrocatalysis and proposes a novel strategy based on the immobilization of imidazolium-based ionic molecules on the surface of the cathode to selectively inhibit HER and enhance ERN. Notably, this research explores a range of hybrid cathode materials, including 2D plate and 3D foam carbon- and metal-based electrodes, which are recognized for their potential in real world applications for ERN. The success of the ionic organic layer immobilization onto the cathodes was confirmed through different physicochemical characterization techniques and subsequent electrocatalytic activity and selectivity evaluation, which demonstrated an enhanced selectivity and faradaic efficiency for ammonia production on hybrid cathodes twice as much as the bare electrode material for ERN under the same experimental conditions
Buchteile zum Thema "3D foam electrodes"
Jena, Debdeep. „Electrons in the Quantum World“. In Quantum Physics of Semiconductor Materials and Devices, 83–122. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780198856849.003.0005.
Der volle Inhalt der QuelleSchweitzer, George K., und Lester L. Pesterfield. „The V–Cr–Mn Group“. In The Aqueous Chemistry of the Elements. Oxford University Press, 2010. http://dx.doi.org/10.1093/oso/9780195393354.003.0016.
Der volle Inhalt der QuelleKrishnan, Kannan M. „Transmission and Analytical Electron Microscopy“. In Principles of Materials Characterization and Metrology, 552–692. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198830252.003.0009.
Der volle Inhalt der QuelleSchweitzer, George K., und Lester L. Pesterfield. „The Fe–Co–Ni Group“. In The Aqueous Chemistry of the Elements. Oxford University Press, 2010. http://dx.doi.org/10.1093/oso/9780195393354.003.0017.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "3D foam electrodes"
Dai, Rui, Beomjin Kwon und Qiong Nian. „A Novel Packing Hollow Dodecahedron Model to Study the Mechanical and Thermal Properties of Stocastic Metallic Foams“. In ASME 2021 16th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/msec2021-60520.
Der volle Inhalt der QuelleChytanya Chinnam, Krishna, Seyed Sepehr Moeini, Simonetta Tuti und Giulia Lanzara. „Annealed Pyrolytic Graphitic Carbon Electrodes for Piezoelectric Acoustic Nanoweb“. In ASME 2023 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/smasis2023-111178.
Der volle Inhalt der QuelleBerhan, L., C. W. Wang und A. M. Sastry. „Damage Initiation in Bonded Particulate Networks: 3D Simulations“. In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/ad-25304.
Der volle Inhalt der QuelleGunda, Naga Siva Kumar, und Sushanta K. Mitra. „Quantification of Microstructural and Transport Properties of Solid Oxide Fuel Cells From Three-Dimensional Physically Realistic Network Structures“. In ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology collocated with ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/fuelcell2011-54929.
Der volle Inhalt der QuelleFan, Jinsheng, Brittany Newell, Jose Garcia, Richard M. Voyles und Robert A. Nawrocki. „Contact-Poling Enhanced, Fully 3D Printed PVdF Pressure Sensors: Towards 3D Printed Functional Materials“. In ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/smasis2021-67832.
Der volle Inhalt der QuelleHisted, Rebecca, Justin Ngo, Omar A. Hussain, Chantel Lapins, Kam K. Leang, Yiliang Liao und Matteo Aureli. „Ionic Polymer Metal Composite Sensors With Engineered Interfaces (eIPMCs): Compression Sensing Modeling and Experiments“. In ASME 2020 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/dscc2020-3289.
Der volle Inhalt der QuelleGoncharova, Olga V. „Quasi-Zero-Dimensional Media Formed by Thin-Film Technique: Microstructure, Subpicosecond Optical Nonlinearities, Applications“. In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.tue.40.
Der volle Inhalt der QuelleEdgerton, Alex, Joseph Najem und Donald Leo. „A Hydrogel-Based Droplet Interface Lipid Bilayer Network“. In ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smasis2014-7580.
Der volle Inhalt der QuelleYafia, Mohamed, und Homayoun Najjaran. „The Effect of Changing the Gap Height on Droplet Deformation During Transport in Digital Microfluidics Systems“. In ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icnmm2014-21296.
Der volle Inhalt der QuelleIshino, Yojiro, Naoki Hayashi, Yuta Ishiko, Ahmad Zaid Nazari, Kimihiro Nagase, Kazuma Kakimoto und Yu Saiki. „Schlieren 3D-CT Reconstruction of Instantaneous Density Distributions of Spark-Ignited Flame Kernels of Fuel-Rich Propane-Air Premixture“. In ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/ht2016-7423.
Der volle Inhalt der Quelle