Dissertationen zum Thema „3D FDM printing“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "3D FDM printing" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Alkhado, Fidan. „3D-printing Framtidens läkemedelstillverkning“. Thesis, Uppsala universitet, Institutionen för farmaceutisk biovetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-441011.
Der volle Inhalt der QuelleKratochvíl, Tomáš. „3D FDM tiskárna reprap a parametry tisku“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-232069.
Der volle Inhalt der QuelleDeaver, Emily. „Processing of Novel 3D Printing Materials and Facilitation of 3D Printing for Enhanced Mechanical and Structural Stability“. University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1596807411218629.
Der volle Inhalt der QuelleBouchal, Petr. „Vývoj 3D FDM tiskárny implementace na trh“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-241863.
Der volle Inhalt der QuelleZítka, Lukáš. „Inovace 3D tiskárny typu Rep Rap“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-319860.
Der volle Inhalt der QuelleProuza, Tomáš. „Návrh duální tiskové hlavy pro FDM 3D tiskárnu“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-242851.
Der volle Inhalt der QuelleAlkhado, Fidan. „3D-printingFramtidens läkemedelstillverkning“. Thesis, Uppsala universitet, Institutionen för farmaceutisk biovetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-441188.
Der volle Inhalt der QuelleButakov, Aleksandr. „Návrh úpravy rámu 3D FDM delta tiskárny pro zvýšení kvality tisku“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417414.
Der volle Inhalt der QuelleHalabrín, Marek. „Spojování 3D FDM tištěných dílů z ABS“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444279.
Der volle Inhalt der QuelleHrdlička, Martin. „Vliv teploty vzduchu na FDM 3D tisk“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-318133.
Der volle Inhalt der QuelleKHAN, FAHAD AHMAD. „Developing Robot assisted Plastic 3D Printing Platform“. Thesis, KTH, Skolan för industriell teknik och management (ITM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295472.
Der volle Inhalt der QuelleKota, Vasuman. „Rasters vs Contours For Thin Wall ULTEM 9085 FDM Applications“. Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1567029612963881.
Der volle Inhalt der QuelleHashemi, Sanatgar Razieh. „FDM 3D printing of conductive polymer nanocomposites : A novel process for functional and smart textiles“. Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I052/document.
Der volle Inhalt der QuelleThe aim of this study is to get the benefit of functionalities of fused deposition modeling (FDM) 3D printed conductive polymer nanocomposites (CPC) for the development of functional and smart textiles. 3D printing holds strong potential for the formation of a new class of multifunctional nanocomposites. Therefore, development and characterization of 3D printable functional polymers and nanocomposites are needed to apply 3D printing as a novel process for the deposition of functional materials on fabrics. This method will introduce more flexible, resource-efficient and cost-effective textile functionalization processes than conventional printing process like screen and inkjet printing. The goal is to develop an integrated or tailored production process for smart and functional textiles which avoid unnecessary use of water, energy, chemicals and minimize the waste to improve ecological footprint and productivity. The contribution of this thesis is the creation and characterization of 3D printable CPC filaments, deposition of polymers and nanocomposites on fabrics, and investigation of the performance of the 3D printed CPC layers in terms of functionality. Firstly, the 3D printable CPC filaments were created including multi-walled carbon nanotubes (MWNT) and high-structured carbon black (Ketjenblack) (KB) incorporated into a biobased polymer, polylactic acid (PLA), using a melt mixing process. The morphological, electrical, thermal and mechanical properties of the 3D printer filaments and 3D printed layers were investigated. Secondly, the performance of the 3D printed CPC layers was analyzed under applied tension and compression force. The response for the corresponding resistance change versus applied load was characterized to investigate the performance of the printed layers in terms of functionality. Lastly, the polymers and nanocomposites were deposited on fabrics using 3D printing and the adhesion of the deposited layers onto the fabrics were investigated. The results showed that PLA-based nanocomposites including MWNT and KB are 3D printable. The changes in morphological, electrical, thermal, and mechanical properties of nanocomposites before and after 3D printing give us a great understanding of the process optimization. Moreover, the results demonstrate PLA/MWNT and PLA/KB as a good piezoresistive feedstock for 3D printing with potential applications in wearable electronics, soft robotics, and prosthetics, where complex design, multi-directionality, and customizability are demanded. Finally, different variables of the 3D printing process showed a significant effect on adhesion force of deposited polymers and nanocomposites onto fabrics which has been presented by the best-fitted model for the specific polymer and fabric
Strnad, Jan. „Návrh vyhřívaného atypického stolu pro 3D tiskárnu“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-254453.
Der volle Inhalt der QuelleHalamíček, Lukáš. „Návrh 3D tiskárny s dvojicí tiskových hlav“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-318389.
Der volle Inhalt der QuelleMartins, José Roberto. „"Manufatura rápida - avaliação das tecnologias de impressão 3D e FDM na fabricação de moldes rápidos"“. Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/18/18146/tde-18072006-101938/.
Der volle Inhalt der QuelleThis work evaluated the application of the Rapid Prototyping technologies 3D printer and FDM (Fused Deposition Modeling) in the rapid manufacturing of molds. This evaluation is based on the quality of the parts molded, as well as in the limitations found in the molds applications. As result the main differences related to quality, and usability was established. The molds produced parts with different degrees of geometric difficulties. For each mold, a few prototypes were produced and their qualities compared.
Kutil, Jaroslav. „Vliv průměru trysky na kvalitu tisku 3D tiskárny“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-241095.
Der volle Inhalt der QuelleFiorenza, Cristina. „Preparazione e caratterizzazione di nuovi nanocompositi elastomerici mediante stampa 3D“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20974/.
Der volle Inhalt der QuelleCoe, Edward Olin. „Printing on Objects: Curved Layer Fused Filament Fabrication on Scanned Surfaces with a Parallel Deposition Machine“. Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/101096.
Der volle Inhalt der QuelleMaster of Science
Rodrigo, Miranda. „A Comparative Study of Strength and Stiffness of Thin-Walled Specimens Fabricated By FDM and 3D Printing Technologies“. BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3349.
Der volle Inhalt der QuelleNOVOA, DANNY MESIAS CHAVEZ. „PHYSICAL -CHEMICAL EVALUATION OF HIGH DENSITY POLYETHYLENE PROCESSED BY THE 3D PRINTING METHOD OF FUSED DEPOSITION MODELING FDM“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=24466@1.
Der volle Inhalt der QuelleCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
O objetivo deste trabalho foi estudar a influencia das condições da impressão 3D nas propriedades finais do polietileno de alta densidade usando a modelagem por fusão e deposição, FDM. Foram impressos protótipos com formato de corpos de prova para teste de tração tipo V segundo norma ASTM D638, a três temperaturas de processamento: 220, 240 e 260 Graus Celsius. Para a impressão das amostras foram mantidos constantes os parâmetros de controle, entre eles a espessura da camada de impressão. As amostras impressas foram caracterizadas por difração de raios X, espectroscopia infravermelha, calorimetria diferencial de varredura, análise termogravimétrica, ensaio de tração, índice de fluidez e teste de contração. Os resultados das caracterizações das amostras impressas foram comparados com os resultados do material sem processar, cujas propriedades foram obtidas usando os mesmo métodos de caracterização. Estes resultados demostraram que as condições de impressão por FDM empregadas neste trabalho causaram apenas uma leve mudança nas características estruturais das amostras processadas do PEAD em relação ao material original sem processamento. Houve um leve aumento da cristalinidade no PEAD impresso (em torno de 1,3 a 3 porcento). Além disso, foi comprovado que por causa do resfriamento desigual na superfície e no interior da amostra impressa, o grau de cristalinidade foi levemente maior no interior que na superfície do corpo de prova impresso. A leve mudança no grau de cristalinidade não foi suficiente para causar mudança no módulo de elasticidade e no limite de escoamento em relação ao PEAD original. Outros resultados demostraram que não houve mudança significativa envolvendo formação de ligações duplas, quebra de cadeias e degradação térmica por efeito da condição do processamento utilizada durante a impressão.
The aim of this work was to study the influence of process conditions for 3D printing on the final properties of prototypes of high density polyethylene (HDPE) using the method of the fused deposition modeling. Prototypes for type-V tensile testing according to ASTM D 638 were printed; They were made to three processing temperatures: 220, 240 and 260 Celsius degree. Control parameters for printing were kept constant in all the samples. The printed samples were characterized by X – ray diffraction, infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, tensile test, melt flow index test, and, shrinkage test. The results of the characterization of the printed samples and of the original material were compared. These results demonstrated that the printing conditions employed in this study caused a slight change in the structural characteristics of the printed samples compared to the unprocessed original material, there being a slight increase in crystallinity (about 1,3 to 3 percent) for HDPE which was printed. In addition, it has been proven that the degree of crystallinity was slightly greater on the inside that on the surface of the printed samples, because of uneven cooling on the surface and inside of these samples. The slight change in the degree of crystallinity was not enough to cause change in the elastic modulus and yield strength compared to the original HDPE. Other results showed that there was not significant change involving bond formation, break chains, and, thermal degradation by the effect of the processing conditions used during printing.
Sobota, Matej. „Návrh funkčního modelu válcového dynamometru“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-401552.
Der volle Inhalt der QuelleMacháček, Marek. „Návrh variantní výrobní technologie oběžného kola ventilátoru“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-451201.
Der volle Inhalt der QuelleŽlebek, Michal. „Konstrukce 3D tiskárny pro materiály s vyšší pevností“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-231780.
Der volle Inhalt der QuelleGullapalli, Ram A. „A Study of Mixed Manufacturing Methods in Sand Casting Using 3D Sand Printing and FDM Pattern-making Based on Cost and Time“. Youngstown State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1485335857475363.
Der volle Inhalt der QuelleÅkerlund, Elin. „Development of polymer based composite filaments for 3D printing“. Thesis, Uppsala universitet, Tillämpad materialvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-388554.
Der volle Inhalt der QuelleCater, Miriam Regina. „Permeability and Porosity Reduction of Fused Deposition Modeling Parts via Internal Epoxy Injection Methods“. The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1396441215.
Der volle Inhalt der QuellePrusic, André. „Perimeter“. Thesis, KTH, Arkitektur, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-146717.
Der volle Inhalt der QuelleProjektet undersöker möjligheterna att använda additiv tillverkning (3d-printning) för att bygga arkitekturen. Genom en kombination av teoretisk forskning och praktiska experiment har ett byggsystem utvecklats som har kapacitet att skapa hus med stora geometriska flexibilitet till ett överkomligt pris i dag. Konstruktionssystemet Perimeter demonstreras i en paviljong belägen på Norra Djurgården i Stockholm.
Chaloupka, Matyáš. „Konstrukce 3D tiskárny pro tisk materiálu s příměsí karbonových vláken“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-318141.
Der volle Inhalt der QuelleFranzén, Johan. „FrankZlicer : Direct slicing using arcs“. Thesis, Mittuniversitetet, Avdelningen för data- och systemvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-36021.
Der volle Inhalt der QuelleJaniš, Adam. „Mechanické vlastnosti materiálů pro 3D tisk“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442479.
Der volle Inhalt der QuellePooladvand, Koohyar. „Multifunctional Testing Artifacts for Evaluation of 3D Printed Components by Fused Deposition Modeling“. Digital WPI, 2019. https://digitalcommons.wpi.edu/etd-dissertations/568.
Der volle Inhalt der QuelleStellmar, Justin. „Predicting the Deformation of 3D Printed ABS Plastic Using Machine Learning Regressions“. Youngstown State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1587462911261523.
Der volle Inhalt der QuelleEngkvist, Gustav. „Investigation of microstructure and mechanical properties of 3D printed Nylon“. Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-66304.
Der volle Inhalt der QuelleKay, Ryan. „Effect of Raster Orientation on the Structural Properties of Components Fabricated by Fused Deposition Modeling“. The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1397596227.
Der volle Inhalt der QuelleAsllani, Engjell. „Design generativo e stampa 3D di un dispositivo hands-free per l'apertura delle porte“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/22135/.
Der volle Inhalt der QuelleANDERSSON, AXEL. „Automation of Fused Filament Fabrication : Realizing Small Batch Rapid Production“. Thesis, KTH, Skolan för industriell teknik och management (ITM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299447.
Der volle Inhalt der QuelleI det här kandidatarbetet undersöker jag hur automatisering inom fused filament fabrication (FFF) kan implementeras, och vad begränsningarna är för olika sorters automatiseringslösningar för FFF. Det läggs även fram en uträkning för den kommersiella gångbarheten för small batch rapid production med implementeringen av ett automatiskt FFF-system. Tillvägagångsättet bestod av en kvalitativ studie baserad på fem intervjuer, kombinerad med empirisk kunskap och data från additiva tillverkningsföretaget Svensson 3D. Det här kompletterades med en analys av vilka parametrar som bör användas för att utvärdera lösningar för FFF-automatisering, och ett ramverk där automatiseringslösningarna betraktas ur ett operatörs-perspektiv. För att räkna ut den kommersiella gångbarheten för automatiseringslösningar av FFF användes internränta och återbetalningstid. Det här resulterade i sex parametrar för att utvärdera automatiseringslösningar för FFF, tre utvärderingar av vilka problem som finns i tre existerande automatiseringslösningar, och slutsatsen att small batch rapid production är kommersiellt gångbart för automatiserad FFF. Slutligen innehåller arbetet en diskussion gällande framtiden för FFF och begränsningarna hos det ramverk som presenterades för att utvärdera automatiserade FFF system. Möjliga lovande lösningar för automatiserad FFF presenteras och hur design för additiv tillverkning kan hjälpa till att forma framtiden för automatiserad FFF.
Vašek, Vojtěch. „Použití modelů zhotovených technologii 3D tisku při výrobě odlitků do bentonitových forem na formovací lince“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-319282.
Der volle Inhalt der QuelleStrnad, Jiří. „Návrh malé multifunkční modelářské CNC frézky“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444277.
Der volle Inhalt der QuelleSvensson, Erik, und Marcus Wiechert. „Abrasiv nötning av polymerer tillverkade genom 3D-skrivning“. Thesis, Högskolan i Skövde, Institutionen för ingenjörsvetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-11124.
Der volle Inhalt der QuelleVolvo Cars i Skövde tillverkar och monterar Volvomotorer. Vid monteringen av tändspolen till alla 4-cylindriga motorer behövs ett monteringsverktyg. Detta monteringsverktyg tillverkas för närvarande från formsprutad termoplast polyoximetylen (POM). Det har noterats att livslängden av verktyget förkortas på grund av abrasiv nötning som uppkommer under monteringsprocessen av tändspolen. Möjligheterna att tillverka monteringsverktyget med en 3D-skrivare utvärderas i samverkan med ÅF, en konsult till Volvo Cars. En litteraturstudie presenteras för att introducera en bredare kunskap i ämnet. Den abrasiva nötningen och materialegenskaper såsom draghållfasthet, tryckhållfasthet samt töjning hos POM och ett alternativt material för 3D-skrivning, Ultem™, en amorf termoplast polyeterimid, behandlas. Dessa materialegenskaper studeras vidare och tas i beaktning med både en teoretisk analys och ett nötningsexperiment, baserat på pin-on-disc metoden. Enligt den teoretiska analysen är nötningen hos Ultem™ approximativt 6 gånger större vid jämförelsen med POM. Nötningsbeständigheten hos Ultem™ är högst då nötning sker parallellt med 3D-skrivningsriktningen av lagren. Nötningsexperimenten visar att nötningen hos Ultem™ är ungefär 3 gånger större vid jämförelsen med POM. Den högsta draghållfastheten hos Ultem™ uppkommer också parallellt med 3D-skrivningsriktningen av lagren. Problem med den låga töjningen hos det 3D-skrivna materialet behandlas. ÅF rekommenderas att tillämpa 3D-skrivning med materialet Ultem™ främst för detaljer med komplexa geometrier med en töjning som inte överskrider 5 %. ÅF rekommenderas även att både stödja och bidra till denna innovativa teknik för att kunna skapa en ledande expertis i ämnet.
Musil, Jiří. „Hledání tvaru skořepinových konstrukcí“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta stavební, 2017. http://www.nusl.cz/ntk/nusl-390254.
Der volle Inhalt der QuelleAbdelki, Andreas. „Fused deposition modeling of API-loaded mesoporous magnesium carbonate“. Thesis, Uppsala universitet, Nanoteknologi och funktionella material, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-417897.
Der volle Inhalt der QuelleMichálek, Mojmír Cyril. „Výpočtové modelování procesu 3D tisku součástí z PET-G materiálu“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-418192.
Der volle Inhalt der QuelleConti, Alfredo. „Tecniche della manifattura additiva - applicazioni in ambito aeronautico e aerospaziale“. Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13306/.
Der volle Inhalt der QuelleXie, Hong-Jin, und 謝弘進. „FDM 3D printing properties of physics PLA-Cu composite applied“. Thesis, 2015. http://ndltd.ncl.edu.tw/handle/f69qs3.
Der volle Inhalt der Quelle國立臺北科技大學
材料科學與工程研究所
103
The goal of this thesis is discussing the basic mechanical property of the product manufactured by using Fused Deposition Modeling (FDM) type 3D printing technology with PLA-Cu powder composite as material. The analysis of specimen was done by using Dynamic Mechanical Analysis, (DMA), Differential Scanning Calorimeter (DSC), Thermogravimetric Analyzer (TGA), and Universal Strength Tester (UST), and Izod impact testing machine. The analysis also includes the comparison of specimens with Acrylonitrile Butadiene Styrene (ABS) and Polylactic Acid (PLA) as material. According to the experiment data of TGA, the sharp decrease of weight at 290℃ infers PLA-Cu composite cannot sustain high temperature environment. According to the analysis of DSC, the melting point at 145.3℃ may be caused by the 20% PLA ingredient in the PLA-copper composite. Furthermore, the copper powder ingredient could cause a homogeneous temperature distribution in the material, so the better manufacturing performance could be achieved. In the tensile strength test, the copper powder added in the material did not enhance the material tensile strength, the strength was decreased instead. In the Izod impact test, PLA-Cu composite specimen had the best impact endurance in the three different material specimens. And there was no bedded structure on the break surface. According to the DMA data, the viscoelasticity of PLA-copper composite is similar to pure PLA material. And the PLA-copper composite specimen performed higher stress when measuring storage modulus and loss modulus. It may be caused by the copper powder in the material
LIN, CHIA-HAO, und 林家豪. „Application and Study on the Fused Deposition Modeling (FDM)3D Printing“. Thesis, 2019. http://ndltd.ncl.edu.tw/handle/5249cz.
Der volle Inhalt der Quelle國立勤益科技大學
機械工程系
107
This study mainly discusses the qualitative analysis of fused deposition modeling (FDM) 3D printing on different wire materials, and uses slice software to simulate slice analysis. It looks for four factors in nozzle temperature, The main factors affecting quality are the best combination of parameters. This wire experiment uses PLA-SUS, PLA-IRON, PLA and ABS to make the difference between the printing test and the appearance, to analyze the different effects of different materials, so that the quality can not be changed in the future application of the mechanism. This also helps save on the cost of materials parameters are also very important. They will affect the resolution of the layer height, therefore they will be planned through the slice software to do the simulation path. In the position of the fused deposition (FDM) support, it is also necessary to think about it, in order to insure the overall quality of the appearance.
Nunes, Tiago Filipe Moreira. „Desenvolvimento de uma impressora 3D (FDM) com extrusor ajustável“. Master's thesis, 2015. http://hdl.handle.net/1822/54583.
Der volle Inhalt der QuelleO presente trabalho trata o estudo de um processo de impressão tridimensional (Fused Deposition Modeling) e desenvolvimento de uma nova tecnologia, metodologia e ferramenta de extrusão capaz de diminuir o tempo total de impressão de um modelo. Esta técnica de impressão tridimensional pertence ao grupo dos métodos de prototipagem rápida e consiste em obter um objeto a partir de um modelo digital de três dimensões. Este método de impressão requere um filamento termoplástico, por exemplo, polylactic acid (PLA), ou acrylayte-butadiene-styrene (ABS) que é aquecido até ao ponto de fusão e extrudido por um orifício “nozzle” com o formato e tamanho pretendido. Ao ser movimentado por um sistema de três graus de liberdade permite desenhar formas complexas depositando uma quantidade específica de um material termoplástico nos sítios adequados. Uma vez concluída uma camada horizontal, a plataforma de impressão sobe ligeiramente para dar origem a uma nova camada (normalmente distâncias que rondam os 0.05mm aos 0.3mm). Este processo repete-se sucessivamente até o modelo estar concluído. Este processo de impressão pode levar poucos minutos até algumas horas no caso de peças mais complexas. O que determina o tempo de impressão é a complexidade do modelo impresso e as características da impressora. No entanto, a velocidade de impressão não e limitada só pelos modelos impressos mas também pelas propriedades químicas dos termoplásticos que são utilizados. Foi assim feita uma pesquisa e desenvolvido um sistema de extrusão bem como o programa de corte, que permite a economia em pelo menos 50% do tempo de impressão e o aumento da resistência mecânica das peças impressas sem ultrapassar os limites funcionais da impressora 3D. Os principais resultados obtidos foram a redução de tempo de impressão, devido à capacidade e flexibilidade da nova tecnologia. Para além do objetivo principal, esta tecnologia permitiu obter modelos impressos com maior resistência mecânica.
This paper deals with the study of a three-dimensional printing process (Fused Deposition Modeling) and development of a new technology, methodology and extrusion tool that can reduce the total time printing a model. This three-dimensional printing technique belongs to the group of rapid prototyping methods and is to obtain an object from a digital model of three dimensions. This printing method requires a thermoplastic filament, for example, polylactic acid (PLA), or acrylayte-butadiene-styrene (ABS) which is heated to melting point and extruded through an orifice "nozzle" in the shape and desired size. When being moved by a system of three degrees of freedom allows designing complex shapes by depositing a specific amount of a thermoplastic material at the appropriate sites. Once completed a horizontal layer, the print platform rises slightly to give a new layer (usually distances that are around 0.05mm to 0.3mm). This process is repeated successively until the model is complete. This printing process may take a few minutes to a few hours for more complex parts. What determines the printing time is the complexity of the printed pattern and printer characteristics. However, the print speed is not limited only by the printed models but also by the chemical properties of the thermoplastics that are used. It was thus made research and developed an extrusion system and a cutting program that allows savings of at least 50% of the printing time and increase the mechanical resistance of the printed parts without exceeding the functional limits of the 3D printer. The main results were the printing time reduction, due to the capacity and flexibility of the new technology. Apart from the main goal, this technology allowed to obtain printed models with higher mechanical strength.
Oliveira, Hugo Miguel Lopes de. „Development, programming and start-up of an interchangeable 3D-printing module“. Master's thesis, 2017. http://hdl.handle.net/10400.8/3254.
Der volle Inhalt der QuelleChen, Xiao Fang, und 陳曉芳. „Development of an on-line system for measuring the remaining material based on FDM 3D printing“. Thesis, 2019. http://ndltd.ncl.edu.tw/handle/3849j2.
Der volle Inhalt der Quelle國立聯合大學
電子工程學系碩士班
107
At present, in the FDM 3D printing process, thermoplastic materials (PLA or ABS) are often used. These materials are made into a wire shape (usually called filament) and wrapped around a spool. When the printing operation is performed, the spool is hung on the machine. As the printing action progresses, the filament will be pulled out, slowly fed into the printing nozzle, heated and softened therein, and then extruded out of the nozzle. Once the softened filament exits the nozzle outlet, it is hardened by cooling. As a result, it is stacked one layer after another layer according to a predetermined route, and a three-dimensional pattern is constructed gradually, which is the operation principle of FDM (Fused Deposition Modeling).Most of the application software for 3D printing can calculate the material required for the design. However, the residual material on the spool can only be estimated by visual observation. Therefore, it may happen that "the filament is used up, but the printing is not completed." At this point, unless someone stops the machine immediately (usually no one is next to the machine), it will continue to print without the filament, which is certainly a frustrating ending, because you have to do it again after a long time waiting. Most of the popular models of 3D printer can't overcome this problem. This research tried to find a simple and effective approach to on-line measure the residual material for FDM 3D printing, and help users to avoid the above dilemma.
Lischke, Fabian. „Design of Self-supported 3D Printed Parts for Fused Deposition Modeling“. Thesis, 2016. http://hdl.handle.net/1805/10853.
Der volle Inhalt der QuelleOne of the primary challenges faced in Additive Manufacturing (AM) is reducing the overall cost and printing time. A critical factor in cost and time reduction is post-processing of 3D printed (3DP) parts, which includes removing support structures. Support is needed to prevent the collapse of the part or certain areas under its own weight during the 3D printing process. Currently, the design of self-supported 3DP parts follows experimental trials. A trial and error process is needed to produce high quality parts by Fused Depositing Modeling (FDM). An example for a chamfer angle, is the common use of 45 degree angle in the AM process. Surfaces that are more flat show defects than inclined surfaces, and therefore a numerical model is needed. The model can predict the problematic areas at a print, reducing the experimental prints and providing a higher number of usable parts. Physical-based models have not been established due to the generally unknown properties of the material during the AM process. With simulations it is possible to simulate the part at different temperatures with a variety of other parameters that have influence on the behavior of the model. In this research, analytic calculations and physical tests are carried out to determine the material properties of the thermoplastic polymer Acrylonitrile - Butadiene - Styrene (ABS) for FDM at the time of extrusion. This means that the ABS is going to be extruded at 200C to 245C and is a viscus material during part construction. Using the results from the physical and analytical models, i.e., Timoshenko’s modified beam theory for micro structures, a numerical material model is established to simulate the filament deformation once it is deposited onto the part. Experiments were also used to find the threshold for different geometric specifications, which could then be applied to the numerical model to improve the accuracy of the simulation. The result of the nonlinear finite element analysis is compared to experiments to show the correlation between the prediction of deflection in simulation and the actual deflection measured in physical experiments. A case study was conducted using an application that optimizes topology of complex geometries. After modeling and simulating the optimized part, areas of defect and errors were determined in the simulation, then verified and and measured with actual 3D prints.