Inhaltsverzeichnis

  1. Zeitschriftenartikel

Auswahl der wissenschaftlichen Literatur zum Thema „3D Electron diffraction“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "3D Electron diffraction" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "3D Electron diffraction"

1

Gemmi, Mauro, and Arianna E. Lanza. "3D electron diffraction techniques." Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 75, no. 4 (2019): 495–504. http://dx.doi.org/10.1107/s2052520619007510.

Der volle Inhalt der Quelle
Annotation:
3D electron diffraction is an emerging technique for the structural analysis of nanocrystals. The challenges that 3D electron diffraction has to face for providing reliable data for structure solution and the different ways of overcoming these challenges are described. The route from zone axis patterns towards 3D electron diffraction techniques such as precession-assisted electron diffraction tomography, rotation electron diffraction and continuous rotation is also discussed. Finally, the advantages of the new hybrid detectors with high sensitivity and fast readout are demonstrated with a proof of concept experiment of continuous rotation electron diffraction on a natrolite nanocrystal.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Cho, Jungyoun, and Xiaodong Zou. "Revealing structural details with 3D electron diffraction/microcrystal electron diffraction." Acta Crystallographica Section A Foundations and Advances 78, a1 (2022): a217. http://dx.doi.org/10.1107/s2053273322097820.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Beanland, R. "3D electron diffraction goes multipolar." IUCrJ 11, no. 3 (2024): 277–78. http://dx.doi.org/10.1107/s2052252524003774.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Schröder, Rasmus R., and Christoph Burmester. "Improvements in electron diffraction of frozen hydrated crystals by energy filtering and large-area single-electron detection." Proceedings, annual meeting, Electron Microscopy Society of America 51 (August 1, 1993): 666–67. http://dx.doi.org/10.1017/s0424820100149167.

Der volle Inhalt der Quelle
Annotation:
Diffraction patterns of 3D protein crystals embedded in vitrious ice are critical to record. Inelastically scattered electrons almost completely superimpose the diffraction pattern of crystals if the thickness of the crystal is higher than the mean free path of electrons in the specimen. Figure 1 shows such an example of an unfiltered electron diffraction pattern from a frozen hydrated 3D catalase crystal. However, for thin 2D crystals electron diffraction has been the state of the art method to determine the Fourier amplitudes for reconstructions to atomic level, and in one case the possibility of obtaining Fourier phases from diffraction patterns has been studied. One of the main problems could be the background in the diffraction pattern due to inelastic scattering and the recording characteristics for electrons of conventional negative material.It was pointed out before, that the use of an energy filtered TEM (EFTEM) and of the Image Plate as a large area electron detector gives considerable improvement for detection of diffraction patterns.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Schmidt, Ella Mara, Yasar Krysiak, Paul Benjamin Klar, Lukas Palatinus, Reinhard B. Neder та Andrew L. Goodwin. "3D-ΔPDF from electron diffraction data". Acta Crystallographica Section A Foundations and Advances 77, a2 (2021): C80. http://dx.doi.org/10.1107/s0108767321095994.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Gemmi, Mauro, Enrico Mugnaioli, Tatiana E. Gorelik, et al. "3D Electron Diffraction: The Nanocrystallography Revolution." ACS Central Science 5, no. 8 (2019): 1315–29. http://dx.doi.org/10.1021/acscentsci.9b00394.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Mei, Kaili, Kejia Zhang, Jungu Xu, and Zhengyang Zhou. "The Application of 3D-ED to Distinguish the Superstructure of Sr1.2Ca0.8Nb2O7 Ignored in SC-XRD." Crystals 13, no. 6 (2023): 924. http://dx.doi.org/10.3390/cryst13060924.

Der volle Inhalt der Quelle
Annotation:
Compared to X-rays, electrons have stronger interactions with matter. In electron diffraction, the low-order structure factors are sensitive to subtle changes in the arrangement of valence electrons around atoms when the scattering vector is smaller than the critical scattering vector. Therefore, electron diffraction is more advantageous for studying the distribution of atoms in the structure with atomic numbers smaller than that of sulfur. In this work, the crystal structure of Sr1.2Ca0.8Nb2O7 (SCNO-0.8) was analyzed using single-crystal X-ray diffraction (SC-XRD) and three-dimensional electron diffraction (3D-ED) techniques, respectively. Interestingly, the superstructure could only be identified by the 3D-ED technique, while no signal corresponding to the superstructure was detected from the SC-XRD data. The superstructure in SCNO-0.8 was disclosed to be caused by different tilting of NbO6 octahedra and the displacements of Sr/Ca atoms in the different atomic layers perpendicular to the a-axis. Therefore, the application of 3D-ED provides an effective method for studying superstructures caused by ordered arrangements of light atoms.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

NISHIYAMA, Yusuke. "3D Electron Diffraction and Solid-State NMR." Nihon Kessho Gakkaishi 64, no. 3 (2022): 201–2. http://dx.doi.org/10.5940/jcrsj.64.201.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Meents, A., V. Hennicke, M. Hachmann, et al. "3D structure determination with MeV electron diffraction." Acta Crystallographica Section A Foundations and Advances 79, a2 (2023): C309. http://dx.doi.org/10.1107/s2053273323093063.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Palatinus, Lukáš, Cinthia Corrêa, Gwladys Mouillard, Philippe Boullay, and Damien Jacob. "Accurate structure refinement from 3D electron diffraction data." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C374. http://dx.doi.org/10.1107/s2053273314096259.

Der volle Inhalt der Quelle
Annotation:
Structure determination from electron diffraction data has seen an enormous progress over the past few years. At present, complex structures with hundreds of atoms in the unit cell can be solved from electron diffraction using the concept of electron diffraction tomography (EDT), possibly combined with precession electron diffraction (PED) [1]. Unfortunately, the initial model is typically optimized using the kinematical approximation to calculate model diffracted intensities. This approximation is quite inaccurate for electron diffraction and leads to high figures of merit and inaccurate results with unrealistically low standard uncertainties. The obvious remedy to the problem is the use of dynamical diffraction theory to calculate the model intensities in structure refinement. This technique has been known and used before, but it has not become very popular, because good fits could be obtained only for sufficiently perfect and sufficiently thin crystals. It has been shown recently on several zone-axis patterns [2] that the quality of the refinement can be improved by using precession electron diffraction. In the present contribution we demonstrate that the same approach can be successfully used to refine crystal structures against non-oriented patterns acquired by EDT combined with PED (PEDT in short). Because the PEDT technique provides three-dimensional diffraction information, it can be used for a complete structure refinement. Several test examples demonstrate that the dynamical structure refinement yields better figures of merit and more accurate results than the refinement using kinematical approximation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie