Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „3 photon“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "3 photon" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "3 photon"
FA, OU, HE MINGGAO und WU FUGEN. „OPTICAL NONLINEARITY VIA PHONONS AS AN INTERMEDIARY“. Journal of Nonlinear Optical Physics & Materials 10, Nr. 01 (März 2001): 65–77. http://dx.doi.org/10.1142/s0218863501000449.
Der volle Inhalt der QuelleTavares-Velasco, G., und J. J. Toscano. „Photon-photon scattering in a 3-3-1 model“. Europhysics Letters (EPL) 53, Nr. 4 (Februar 2001): 465–70. http://dx.doi.org/10.1209/epl/i2001-00175-8.
Der volle Inhalt der QuelleChef, Samuel, Chung Tah Chua und Chee Lip Gan. „Machine Learning for Time-Resolved Emission: Image Resolution Enhancement“. EDFA Technical Articles 23, Nr. 3 (01.08.2021): 24–31. http://dx.doi.org/10.31399/asm.edfa.2021-3.p024.
Der volle Inhalt der QuelleU'Ren, A. B., K. Banaszek und I. A. Walmsley. „Photon engineering for quantum information processing“. Quantum Information and Computation 3, special (Oktober 2003): 480–502. http://dx.doi.org/10.26421/qic3.s-3.
Der volle Inhalt der QuelleHu, Huiqin, Xinyi Ren, Zhaoyang Wen, Xingtong Li, Yan Liang, Ming Yan und E. Wu. „Single-Pixel Photon-Counting Imaging Based on Dual-Comb Interferometry“. Nanomaterials 11, Nr. 6 (24.05.2021): 1379. http://dx.doi.org/10.3390/nano11061379.
Der volle Inhalt der QuelleWhite, John, Victoria Centonze, David Wokosin und William Mohler. „Using Multiphoton Microscopy for the Study of Embryogenesis“. Microscopy and Microanalysis 3, S2 (August 1997): 307–8. http://dx.doi.org/10.1017/s1431927600008424.
Der volle Inhalt der QuelleXiu, Xiao-Ming, Li Dong, Hong-Zhi Shen, Ya-Jun Gao und X. X. Yi. „Two-party QPC with polarization-entangled Bell states and the coherent states“. Quantum Information and Computation 14, Nr. 3&4 (März 2014): 236–54. http://dx.doi.org/10.26421/qic14.3-4-3.
Der volle Inhalt der QuelleDhobi, Saddam Husain, Kishori Yadav und Bhishma Karki. „Variation of Energy Density and Mass Density of Photon with Wavelength“. Indian Journal of Advanced Physics 1, Nr. 2 (10.10.2021): 1–5. http://dx.doi.org/10.54105/ijap.b1003.101221.
Der volle Inhalt der QuelleChandra, N., und R. Ghosh. „Generation of entanglement between spin of an electron and polarization of a photon“. Quantum Information and Computation 9, Nr. 1&2 (Januar 2009): 36–61. http://dx.doi.org/10.26421/qic9.1-2-3.
Der volle Inhalt der QuellePeresunko, D. „Direct photon production in pp, p–Pb and Pb–Pb collisions measured with the ALICE experiment“. EPJ Web of Conferences 191 (2018): 05001. http://dx.doi.org/10.1051/epjconf/201819105001.
Der volle Inhalt der QuelleDissertationen zum Thema "3 photon"
Sunter, Kristen Ann. „Optical Modeling of Superconducting Nanowire Single Photon Detectors“. Thesis, Harvard University, 2014. http://nrs.harvard.edu/urn-3:HUL.InstRepos:13106421.
Der volle Inhalt der QuelleEngineering and Applied Sciences
Romijn, Elisabeth Inge. „Development of 3-D Quantitative Analysis of Multi-Photon Microscopy Images“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18425.
Der volle Inhalt der QuelleSun, Chengwei. „First measurement of the reaction helium-3(photon,proton -proton)neutron“. W&M ScholarWorks, 1990. https://scholarworks.wm.edu/etd/1539623791.
Der volle Inhalt der QuelleTelliez, Cécile. „Advanced optical microscopy for spatially and temporally precise deep brain interrogation“. Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS041.
Der volle Inhalt der QuelleIn the field of neuroscience, the advent of light-sensitive optogenetic tools has opened new opportunities for precisely controlling neuronal activity and study brain functioning optically. In optics, this has motivated the development of various light-delivery and collection strategies to functionally image and manipulate neural activity with high spatiotemporal precision. Particularly, light-shaping approaches, such as Computer-Generated Holography combined with Temporal Focusing, have enabled temporally precise targeting of individual neurons or clusters with near single-cell accuracy within volumetric spaces of hundreds of microns. This precision is crucial to get critical insights into the neural code and establishing connections between neural activity with behavior and perception at fine scale. Despite these advancements, challenges persist in enabling complex brain investigations, especially when it comes to control vast populations of cells with high spatiotemporal precision in depth. During my thesis, I particularly focused on those challenges and developed new light-shaping optical strategies aiming at (i) expanding the number of excitable neurons, (ii) improving temporal resolution and (iii) increasing the penetration depth of cell-targeted multiphoton optogenetic investigation based on phase-modulation light-targeting.Initially, I concentrated on developing an ultra-fast two-photon (2P) optical system (FLiT), where a multiplexing LC-SLM and a galvanometric mirror are coupled to allow kHz-rate switching of spatially precise illumination patterns on the sample. This serves two primary purposes. Firstly, it enables to optically tune the relative spiking time of distinct cells with a temporal resolution of about one order of magnitude higher compared to previous methods. Secondly, FLiT allows targeting a given ensemble of cells by reducing the excitation power budget by a 4-5 factor, while minimizing light-induced thermal rise. To push forward this approach, I further modified the original optical design by including a de-scan unit (deFLiT) which enabled to enlarge the number of usable holograms and increase even further the power gain and temporal precision of conventional FLiT .In the second phase of the thesis, I focused on a three-photon (3P) holographic system to conduct optogenetics experiments deeper inside the brain. I designed and built the system and I then validated it by photo-activating various opsins and driving high-rate firing in targeted neurons under a verified 3PE regime. Compared to previous holographic 2P-photon systems, this approach will enable the extension of all-optical investigations to deeper brain regions.These new strategies will be important for studying neuronal circuits with rapid and precise optogenetic stimulation across large neuronal ensembles in depth
Yilmaz, Ercan. „Characteristic X-ray, Photoelectron And Compton-scattered Photon Escape From A Hpge Detector“. Phd thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/3/1210061/index.pdf.
Der volle Inhalt der QuelleDamon, Vianney. „Filtrage programmable et mémoire quantique dans Er 3+ YSO“. Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00877060.
Der volle Inhalt der QuelleAldousari, Hanan. „Study of 2-to-3 photon annihilation using hydrophilic material as hypoxic tumour phantom“. Thesis, University of Surrey, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616952.
Der volle Inhalt der QuelleNunes, Luiz Antonio de Oliveira. „Espectroscopia de dois fotons do ion Gd+3 em estruturas perovskitas“. Universidade de São Paulo, 1988. http://www.teses.usp.br/teses/disponiveis/54/54132/tde-10032008-113404/.
Der volle Inhalt der QuelleThe different transitions of \'Gd POT.3+\' ion in samples of GdAl\'O IND.3\' and GGG were studied by means of the absorption of one and two photons. The crystalline field influence an the ion was studied by using spectroscopic techniques with pulsed laser as well as continuous laser. These results are in agreement with the group theory prediction. From the luminescence spectrum of this sample little impurities aspects in the GdA1\'O IND.3\' sample were detected. No anomaly was detected in the spectra obtained so that we believed there is no \'Gd POT.3+\'-\'Gd POT.3+\' interaction above the phase transition temperature. High resolution continuous dye laser and pulsed die laser were built up to carry out the experiments. The electronic equipment used in the experiment was developed by us.
Makgopa, Bessie Mmakgoto. „Simulation of the irradiation behaviour of the PBMR fuel in the SAFARI-1 reactor / B.M. Makgopa“. Thesis, North-West University, 2009. http://hdl.handle.net/10394/4030.
Der volle Inhalt der QuelleThesis (M.Sc. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2009
Paulik, Julia [Verfasser]. „[123I]-3-Iodcytisin als möglicher Radiotracer für die Darstellung der nikotinergen Acetylcholinrezeptoren mittels Single-Photon-Emissions-Tomographie / Julia Paulik“. Bonn : Universitäts- und Landesbibliothek Bonn, 2015. http://d-nb.info/1077271263/34.
Der volle Inhalt der QuelleBücher zum Thema "3 photon"
1950-, Becker W., Society of Photo-optical Instrumentation Engineers., Boston Electronics Corporation und Becker & Hickl., Hrsg. Advanced photon counting techniques: 1-3 October, 2006, Boston, Massachusetts, USA. Bellingham, Wash: SPIE, 2006.
Den vollen Inhalt der Quelle findenJ, Schanda, Lippényi T, International Measurement Confederation, Society of Photo-optical Instrumentation Engineers. Hungarian Chapter. und Méréstechnikai és Automatizálási Tudományos Egyesület (Hungary), Hrsg. 14th Symposium on Photonic Measurements: 1-3 June 1992, Sopron, Hungary. Bellingham, Wash., USA: SPIE, 1993.
Den vollen Inhalt der Quelle findenMyneni, Ranga B., und Juhan Ross, Hrsg. Photon-Vegetation Interactions. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75389-3.
Der volle Inhalt der QuelleYamanouchi, Kaoru, Sergey Tunik und Vladimir Makarov, Hrsg. Progress in Photon Science. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05974-3.
Der volle Inhalt der QuelleYamanouchi, Kaoru, Hrsg. Progress in Photon Science. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52431-3.
Der volle Inhalt der QuelleZhang, Fan. Photon Upconversion Nanomaterials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45597-5.
Der volle Inhalt der QuelleEvans, Myron W., Jean-Pierre Vigier, Sisir Roy und Stanley Jeffers. The Enigmatic Photon. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-010-9840-3.
Der volle Inhalt der QuelleSeitz, Peter, und Albert JP Theuwissen, Hrsg. Single-Photon Imaging. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18443-7.
Der volle Inhalt der QuelleKapusta, Peter, Michael Wahl und Rainer Erdmann, Hrsg. Advanced Photon Counting. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15636-1.
Der volle Inhalt der QuelleChang, You-Hao. Study of Double Parton Scattering in Photon + 3 Jets Final State. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3824-2.
Der volle Inhalt der QuelleBuchteile zum Thema "3 photon"
Böer, Karl W., und Udo W. Pohl. „Photon–Phonon Interaction“. In Semiconductor Physics, 1–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-06540-3_11-3.
Der volle Inhalt der QuelleBöer, Karl W., und Udo W. Pohl. „Photon–Phonon Interaction“. In Semiconductor Physics, 389–424. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69150-3_11.
Der volle Inhalt der QuelleBöer, Karl W., und Udo W. Pohl. „Photon–Phonon Interaction“. In Semiconductor Physics, 429–66. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-18286-0_11.
Der volle Inhalt der QuelleBöer, Karl W., und Udo W. Pohl. „Photon-Phonon Interaction“. In Semiconductor Physics, 1–36. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06540-3_11-1.
Der volle Inhalt der QuelleBöer, Karl W., und Udo W. Pohl. „Photon–Phonon Interaction“. In Semiconductor Physics, 1–36. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-06540-3_11-2.
Der volle Inhalt der QuelleBöer, Karl W., und Udo W. Pohl. „Photon–Phonon Interaction“. In Semiconductor Physics, 1–38. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-06540-3_11-4.
Der volle Inhalt der QuelleSudhir, Vivishek. „Photon-Phonon Coupling: Cavity Optomechanics“. In Springer Theses, 83–101. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69431-3_4.
Der volle Inhalt der QuelleEvans, Myron W. „B (3) Echoes“. In The Enigmatic Photon, 285–93. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-010-9044-5_19.
Der volle Inhalt der QuelleRouan, Daniel. „Photon“. In Encyclopedia of Astrobiology, 1244. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1201.
Der volle Inhalt der QuelleRouan, Daniel. „Photon“. In Encyclopedia of Astrobiology, 1877. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1201.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "3 photon"
Hunter, Geoffrey. „Einstein’s Photon Concept Quantified by the Bohr Model of the Photon“. In QUANTUM THEORY: Reconsideration of Foundations - 3. AIP, 2006. http://dx.doi.org/10.1063/1.2158738.
Der volle Inhalt der QuelleBraverman, Boris, Nicholas M. Sullivan und Robert W. Boyd. „Photon Counting with an Adaptive Storage Loop“. In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/fio.2023.fth3b.3.
Der volle Inhalt der QuelleZhao, Haoqi, Yichen Ma, Zihe Gao, Na Liu, Tianwei Wu, Shuang Wu, Xilin Feng, James Hone, Stefan Strauf und Liang Feng. „Integrated tunable twisted single photon source“. In CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_si.2023.stu4j.3.
Der volle Inhalt der QuelleHuang, Jiahui, Wei Liu, Alessio Miranda, Benjamin Dwir, Alok Rudra, Eli Kapon und Chee Wei Wong. „Site-controlled QD embedded coupled photonic crystal cavity waveguides for on-chip photon routing“. In CLEO: Fundamental Science. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_fs.2023.fth4j.3.
Der volle Inhalt der QuelleEsener, Sadik, und P. M. Rentzepis. „Two-photon 3-D optical memories“. In Optical Data Storage. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/ods.1991.mf1.
Der volle Inhalt der QuelleEsener, Sadik C., und Peter M. Rentzepis. „Two-photon 3-D optical memories“. In Optical Data Storage, herausgegeben von James J. Burke, Thomas A. Shull und Nobutake Imamura. SPIE, 1991. http://dx.doi.org/10.1117/12.45953.
Der volle Inhalt der QuelleLipson, M., J. Michel, K. Wada und L. C. Kimerling. „Strong Er/sup 3+/-photon coupling“. In Conference on Lasers and Electro-Optics (CLEO 2000). Technical Digest. Postconference Edition. TOPS Vol.39. IEEE, 2000. http://dx.doi.org/10.1109/cleo.2000.906892.
Der volle Inhalt der QuelleMcCormick, F. B., I. Cokgor, A. S. Dvornikov, M. Wang, N. Kim, K. Coblentz, S. E. Esener und P. M. Rentzepis. „3-D Data Storage in Two-Photon Photochromic Optical Memories“. In Symposium on Optical Memory. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/isom.1996.owb.1.
Der volle Inhalt der QuelleBenić, Sanjin, Kenji Fukushima, Oscar Garcia-Montero und Raju Venugopalan. „CGC Photon Production at NLO in pA Collisions“. In INT Program INT-18-3. WORLD SCIENTIFIC, 2020. http://dx.doi.org/10.1142/9789811214950_0060.
Der volle Inhalt der QuelleZhang, Guiyin, Mengjun Li und Yidong Jin. „Photo-ionization probability of 3+1 resonance enhanced multi-photon process“. In Photonics Asia, herausgegeben von Qihuang Gong, Guang-Can Guo und Yuen-Ron Shen. SPIE, 2012. http://dx.doi.org/10.1117/12.981861.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "3 photon"
Cullen, D. E. TART96: a coupled neutron-photon 3-D, combinatorial geometry Monte Carlo transport code. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/461393.
Der volle Inhalt der QuelleCullen, D. E. TART97 a coupled neutron-photon 3-D, combinatorial geometry Monte Carlo transport code. Office of Scientific and Technical Information (OSTI), November 1997. http://dx.doi.org/10.2172/572762.
Der volle Inhalt der QuelleRhoades, W. A., und D. B. Simpson. The TORT three-dimensional discrete ordinates neutron/photon transport code (TORT version 3). Office of Scientific and Technical Information (OSTI), Oktober 1997. http://dx.doi.org/10.2172/582265.
Der volle Inhalt der QuelleCullen, D. E. TART98 a coupled neutron-photon 3-D, combinatorial geometry time dependent Monte Carlo Transport code. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/8435.
Der volle Inhalt der QuelleCullen, D. E. TART 2000: A Coupled Neutron-Photon, 3-D, Combinatorial Geometry, Time Dependent, Monte Carlo Transport Code. Office of Scientific and Technical Information (OSTI), November 2000. http://dx.doi.org/10.2172/802092.
Der volle Inhalt der QuelleCristy, M., und K. F. Eckerman. Specific absorbed fractions of energy at various ages from internal photon sources: 3, Five-year-old. Office of Scientific and Technical Information (OSTI), April 1987. http://dx.doi.org/10.2172/6263443.
Der volle Inhalt der QuelleBruinvis, I. A. D., R. B. Keus, W. J. M. Lenglet, G. J. Meijer, B. J. Mijnheer, A. A. Van 't Veld, J. L. M. Venselaar, J. Welleweerd und E. Woudstra. NCS Report 15: Quality assurance of 3-D treatment planning systems for external photon and electron beams. Delft: NCS, März 2005. http://dx.doi.org/10.25030/ncs-015.
Der volle Inhalt der QuelleCullen, D. TART2012 An Overview of A Coupled Neutron Photon 3-D, Combinatorial Geometry Time Dependent Monte Carlo Transport Code. Office of Scientific and Technical Information (OSTI), Juli 2012. http://dx.doi.org/10.2172/1056631.
Der volle Inhalt der QuelleCullen, D. E. Users Manual for TART 2002: A Coupled Neutron-Photon 3-D, Combinatorial Geometry Time Dependent Monte Carlo Transport Code. Office of Scientific and Technical Information (OSTI), Juni 2003. http://dx.doi.org/10.2172/15004094.
Der volle Inhalt der QuellePrasad, Paras N. Development of Bottom-Up Chemical Approaches to 3-D Negative Index Meta-Materials: Two Photon Lithographic Approach-Chiral Chemical Synthesis Approach. Fort Belvoir, VA: Defense Technical Information Center, Juni 2014. http://dx.doi.org/10.21236/ad1013206.
Der volle Inhalt der Quelle