Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „3-hydroxy fatty acids“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "3-hydroxy fatty acids" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "3-hydroxy fatty acids"
Wood, Paul L. „Fatty Acyl Esters of Hydroxy Fatty Acid (FAHFA) Lipid Families“. Metabolites 10, Nr. 12 (17.12.2020): 512. http://dx.doi.org/10.3390/metabo10120512.
Der volle Inhalt der QuelleNichols, Frank, und Baliram Maraj. „Relationship between Hydroxy Fatty Acids and Prostaglandin E2 in Gingival Tissue“. Infection and Immunity 66, Nr. 12 (01.12.1998): 5805–11. http://dx.doi.org/10.1128/iai.66.12.5805-5811.1998.
Der volle Inhalt der QuelleYang, Nian-Yun, Yi-Fang Yang und Kun Li. „Analysis of Hydroxy Fatty Acids from the Pollen of Brassica campestris L. var. oleifera DC. by UPLC-MS/MS“. Journal of Pharmaceutics 2013 (10.10.2013): 1–6. http://dx.doi.org/10.1155/2013/874875.
Der volle Inhalt der QuelleBourboula, Asimina, Dimitris Limnios, Maroula G. Kokotou, Olga G. Mountanea und George Kokotos. „Enantioselective Organocatalysis-Based Synthesis of 3-Hydroxy Fatty Acids and Fatty γ-Lactones“. Molecules 24, Nr. 11 (31.05.2019): 2081. http://dx.doi.org/10.3390/molecules24112081.
Der volle Inhalt der QuelleSjögren, Jörgen, Jesper Magnusson, Anders Broberg, Johan Schnürer und Lennart Kenne. „Antifungal 3-Hydroxy Fatty Acids from Lactobacillus plantarum MiLAB 14“. Applied and Environmental Microbiology 69, Nr. 12 (Dezember 2003): 7554–57. http://dx.doi.org/10.1128/aem.69.12.7554-7557.2003.
Der volle Inhalt der QuelleNawabi, Parwez, Stefan Bauer, Nikos Kyrpides und Athanasios Lykidis. „Engineering Escherichia coli for Biodiesel Production Utilizing a Bacterial Fatty Acid Methyltransferase“. Applied and Environmental Microbiology 77, Nr. 22 (16.09.2011): 8052–61. http://dx.doi.org/10.1128/aem.05046-11.
Der volle Inhalt der QuelleSebolai, Olihile M., Carolina H. Pohl, Piet J. Botes, Catharina J. Strauss, Pieter W. J. van Wyk, Alfred Botha und Johan L. F. Kock. „3-Hydroxy fatty acids found in capsules ofCryptococcus neoformans“. Canadian Journal of Microbiology 53, Nr. 6 (Juni 2007): 809–12. http://dx.doi.org/10.1139/w07-045.
Der volle Inhalt der QuelleVenter, Pierre, Johan L. F. Kock, Dennis J. Coetzee, Piet J. Botes und Santosh Nigam. „The production of 3-Hydroxy fatty acids by yeast“. Prostaglandins & Other Lipid Mediators 59, Nr. 1-6 (Dezember 1999): 198. http://dx.doi.org/10.1016/s0090-6980(99)90433-1.
Der volle Inhalt der QuelleJacob, Jürgen, und Gottfried Raab. „2,3-Dihydroxy Fatty Acids-Containing Waxes in Storks (C iconiidae)“. Zeitschrift für Naturforschung C 51, Nr. 9-10 (01.10.1996): 743–49. http://dx.doi.org/10.1515/znc-1996-9-1021.
Der volle Inhalt der QuelleGuichardant, M., und M. Lagarde. „Monohydroxylated fatty acid substrate specificity of human leukocyte 5-lipoxygenase and ω-hydroxylase“. Biochemical Journal 256, Nr. 3 (15.12.1988): 879–83. http://dx.doi.org/10.1042/bj2560879.
Der volle Inhalt der QuelleDissertationen zum Thema "3-hydroxy fatty acids"
Jenske, Ramona. „Compound specific and enantioselective determination of 2- and 3-hydroxy fatty acids in food“. Aachen Shaker, 2009. http://d-nb.info/996919910/04.
Der volle Inhalt der QuelleMcDaniel, J., Karen A. Massey und Anna Nicolaou. „Fish oil supplementation alters levels of lipid mediators of inflammation in microenvironment of acute human wounds“. Wiley, 2010. http://hdl.handle.net/10454/4577.
Der volle Inhalt der QuelleChronic wounds often result from prolonged inflammation involving excessive polymorphonuclear leukocyte activity. Studies show that the omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids found in fish oils generate bioactive lipid mediators that reduce inflammation and polymorphonuclear leukocyte recruitment in numerous inflammatory disease models. The purpose of this study was to test the hypotheses that boosting plasma levels of eicosapentaenoic and docosahexaenoic acids with oral supplementation would alter lipid mediator levels in acute wound microenvironments and reduce polymorphonuclear leukocyte levels. Eighteen individuals were randomized to 28 days of either eicosapentaenoic + docosahexaenoic acid supplementation (Active Group) or placebo. After 28 days the Active Group had significantly higher plasma levels of eicosapentaenoic (p<0.001) and docosahexaenoic acid (p<0.001) than the Placebo Group and significantly lower wound fluid levels of two 15-lipoxygenase products of omega-6 polyunsaturated fatty acids, [9- hydroxyoctadecadienoic (HODE) acid (p = 0.033) and15-hydroxyeicosatrienoic acid (HETrE) (p = 0.006)], at 24 hours post wounding. The Active Group also had lower mean levels of myeloperoxidase, a leukocyte marker, at 12 hours and significantly more re-epithelialization on Day 5 post wounding. We suggest that lipid mediator profiles can be manipulated by altering polyunsaturated fatty acid intake to create a wound microenvironment more conducive to healing.
Jenske, Ramona [Verfasser]. „Compound-Specific and Enantioselective Determination of 2- and 3-Hydroxy Fatty Acids in Food / Ramona Jenske“. Aachen : Shaker, 2009. http://d-nb.info/1159835012/34.
Der volle Inhalt der QuelleKiezel-Tsugunova, Magdalena. „Elucidating the metabolism of n-3 polyunsaturated fatty acids and formation of bioactive lipid mediators in human skin“. Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/elucidating-the-metabolism-of-n3-polyunsaturated-fatty-acids-and-formation-of-bioactive-lipid-mediators-in-human-skin(773abedd-c726-4dab-890a-694a96b1c074).html.
Der volle Inhalt der QuelleAwada, Manar. „L’oxydation modifie les effets métaboliques d'acides gras polyinsaturés de la série n-3 incorporés par différents vecteurs dans des régimes hyperlipidiques : contribution de l’absorption intestinale et de la réactivité cellulaire du 4-hydroxy-hexénal“. Thesis, Lyon, INSA, 2012. http://www.theses.fr/2012ISAL0143/document.
Der volle Inhalt der QuelleDietary intake of n-3 long chain (LC) polyunsaturated fatty acids (PUFA) are recommended for their beneficial effects on human health, especially to prevent the development of metabolic diseases. However, the bioavailability of these PUFAs and their metabolic impact could be modulated by their chemical carriers (triacylglycerols, TG or phospholipids, PL). In addition, these PUFA are susceptible to lipid peroxidation. If they are not protected from oxidation, they can form toxic reactive species such as 4-hydroxy-hexenal (4-HHE). In this context, the aim of our study was to evaluate the impact of enriching high-fat diets with n-3 PUFA (i) bound to TG or PL and (ii) in unoxidized or oxidized form on the generation of inflammation and oxidative stress, and to understand some underlying mechanisms associated with intestinal absorption and reactivity of 4-HHE. On the one hand, our study confirmed in mice that the consumption of n-3 PUFA protects against oxidative stress and inflammation induced by high-fat diets. However, compared to TG, n-3 PUFA in the form of PL reduce the size of adipocytes and stimulate the antioxidant system. On the other hand, our study showed that the consumption of moderately oxidized n-3 PUFA results in increased plasma concentrations of 4-HHE and of inflammatory markers. In addition, activation of inflammatory pathways as well as endoplasmic reticulum stress were detected in the small intestine. Our results in vivo and in vitro, using intestinal Caco-2/TC7 cells, indicate that this can be partly due to the intestinal absorption of the end-product of n-3 PUFA oxidation, 4-HHE. In the context of the development of foods containing LC n-3 PUFA, our results contribute to identify the most effective PUFA carriers on a metabolic standpoint. Regarding public health and clinical practice, our results provide new basis for the set up of best practices regarding production and storage of food and supplements enriched with LC n-3 PUFA to avoid their lipid oxidation and its possible deleterious effects
Liu, Hong-yi, und 劉鴻毅. „Study on the roles and quantification of 3-hydroxy fatty acids in the soma and supernatant of cultured Burkholderia cepacia complex“. Thesis, 2009. http://ndltd.ncl.edu.tw/handle/78dh4t.
Der volle Inhalt der Quelle國立高雄師範大學
生物科學研究所
97
Study on the roles and quantification of 3-hydroxy fatty acids in the soma and supernatant of cultured Burkholderia cepacia complex Abstract Although Burkholderia cepacia complex (BCC) divided into 9 of recA genomovars in present, the virulence to hosts in these genomovars were still undifferentiated. We hypothesized that, in cultural supernatants, the amounts of C14:0 3-OH fatty acids, the unique components of BCC lipopolysaccharides (LPS), acted as a biomarker for virulence, were related to the degrees of pathologically inflammatory effects on animals with BCC infection. Thirty-two strains were identified to BCC gonomorvarⅢa by the outcomes of biochemical and molecular tests, and typed to their genetic independence by the profiles of cellular fatty acid and randomly amplified polymorphic DNA (RAPD), respectively. To determine the concentration of fatty acids in supernatants, the quantitative profiles of each fatty acid methyl ester (FAME) analyzed by gas chromatography mass spectrometry (GC/MS) was developed. In this study, the instrument detection limits were reached to 26 ng/ml. The optimal reaction was defined as >90% in esterification for each fatty acid. The processing of samples were performed as that, after a 7 d-incubation, the cultural supernatants were acted as reactants and sequentially reacted to alkaline hydrolysis for 30 min and esterification for 10min. Among of the cultures of these isolates, the concentration of C14:0 3-OH fatty acid in supernatants was ranged from 19.3±0.4 to 133.7±3.6ng/ml. The molar ratio of C14:0/C16:0 3-OH fatty acid was calculated to be 1.78±0.3. With multiple regression analysis, a positive correlation was shown that the concentration of 3-OH fatty acids in supernatants of each isolates was against some levels of pathological effect (area of cell debris in liver) of Balb/c mice with tested BCC infection individually (R2=0.682). Results suggested that the concentration of C14:0 3-OH fatty acid in BCC cultural supernatants was acted as an indicator of virulence to the mice with the bacterial infection for 2 d. Keywords:Burkholderia cepacia complex, lipopolysaccharides, C14:0 3-OH fatty acid, Gas chromatography mass spectrometry
Buchteile zum Thema "3-hydroxy fatty acids"
Kock, J. Lodewyk F., Pierre Venter, Alfred Botha, Dennis J. Coetzee, Pieter W. J. van Wyk, Dandré P. Smith, Tankred Schewe und Santosh Nigam. „Production of 3-Hydroxy Fatty Acids by the Yeast Dipodascopsis Uninucleata. Biological Implications“. In Advances in Experimental Medicine and Biology, 675–77. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4793-8_97.
Der volle Inhalt der QuelleRaulin, J., D. Lapous, C. Loriette und I. K. Grundt. „HMGR (3-Hydroxy, 3-Methylglutaryl-CoA Reductase) Activity of Cultured Rat Brain Cells: Sensitivity to n-3 and n-6 Polyunsaturated Fatty Acids (PUFAs) from Cod-Liver and Sunflower Oils“. In Enzymes of Lipid Metabolism II, 479–84. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5212-9_62.
Der volle Inhalt der QuelleZiboh, Vincent A. „Cutaneous essential fatty acids and hydroxy fatty acids: Modulation of inflammatory and hyperproliferative processes“. In Fatty Acids and Inflammatory Skin Diseases, 55–67. Basel: Birkhäuser Basel, 1999. http://dx.doi.org/10.1007/978-3-0348-8761-8_4.
Der volle Inhalt der QuelleCullingford, T. E., K. K. Bhakoo, S. Peuchen, C. T. Dolphin und J. B. Clark. „Regulation of the Ketogenic Enzyme Mitochondrial 3-Hydroxy-3-Methylglutaryl-COA Synthase in Astrocytes and Meningeal Fibroblasts“. In Current Views of Fatty Acid Oxidation and Ketogenesis, 241–51. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-46818-2_29.
Der volle Inhalt der QuelleJones, Patricia M., und Michael J. Bennett. „3-Hydroxy-Fatty Acid Analysis by Gas Chromatography-Mass Spectrometry“. In Methods in Molecular Biology, 229–43. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60761-459-3_21.
Der volle Inhalt der QuelleDerogis, Priscilla Bento Matos Cruz, Adriano B. Chaves-Fillho und Sayuri Miyamoto. „Characterization of Hydroxy and Hydroperoxy Polyunsaturated Fatty Acids by Mass Spectrometry“. In Advances in Experimental Medicine and Biology, 21–35. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11488-6_2.
Der volle Inhalt der QuelleTanamoto, K. „Development of a New Quantitative Method for Detection of Endotoxin by Fluorescence Labeling of 3-Hydroxy Fatty Acid“. In Endotoxin, 203–13. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-5140-6_18.
Der volle Inhalt der QuelleAitken, Alastair. „Structure determination of acylated proteins“. In Lipid Modification of Proteins, 63–88. Oxford University PressOxford, 1992. http://dx.doi.org/10.1093/oso/9780199632749.003.0004.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "3-hydroxy fatty acids"
Véquaud, P., S. Derenne, A. Thibault, C. Anquetil, G. Bonanomi, S. Collin, S. Contreras et al. „Global Temperature and pH Calibrations Based on Bacterial 3-HYDROXY Fatty Acids in Soils“. In 30th International Meeting on Organic Geochemistry (IMOG 2021). European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202134047.
Der volle Inhalt der QuelleHou, C., G. Duffy, A. Yamoah, D. Sasche, P. Chaiseanwang, C. Wang, Y. Yang, E. Norris und J. Bendle. „Initial Calibration of 3-Hydroxy Fatty Acids Paleoclimate Proxies for European Lakes and Soils“. In IMOG 2023. European Association of Geoscientists & Engineers, 2023. http://dx.doi.org/10.3997/2214-4609.202333062.
Der volle Inhalt der QuelleVéquaud, P., S. Collin, C. Anquetil, J. Poulenard, P. Sabatier, P. Choler, S. Derenne und A. Huguet. „Bacterial 3-Hydroxy Fatty Acids: Applicability as Temperature and Ph Proxies in Soils from the French Alps“. In 29th International Meeting on Organic Geochemistry. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902985.
Der volle Inhalt der QuelleNaeher, S., S. Rosenberg, J. A. Bendle, K. Yamoah, J. Pearman, B. Duncan und M. J. Vandergoes. „Investigating Bacterial 3-Hydroxy Fatty Acids as New Indicators of Past Air Temperature in Lake Sediments from New Zealand“. In IMOG 2023. European Association of Geoscientists & Engineers, 2023. http://dx.doi.org/10.3997/2214-4609.202333039.
Der volle Inhalt der QuelleHuguet, Arnaud, Eve Hellequin, Pierre Véquaud, Marina Seder-Colomina, Sylvie Collin und Adrienne Kish. „Effect of temperature and pH on the membrane lipid composition of soil Gram-negative bacteria isolates: Implications for the use of 3-hydroxy fatty acids as (paleo)environmental proxies“. In Goldschmidt2023. France: European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.16169.
Der volle Inhalt der QuelleWang, Canfa, James Bendle, Huan Yang, Yi Yang, Alice Hardman, Afrifa Yamoah, Amy Thorpe et al. „Calibration of bacterial 3-hydroxy fatty acid based palaeoclimate proxies in global soils“. In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.7290.
Der volle Inhalt der QuelleHardman, A., A. Thorpe, K. Yamoah, C. Wang, Y. Yang, D. Read und J. Bendle. „A Novel 3-Hydroxy Fatty Acid-Based Palaeothermometer Developed from Southwestern US Lacustrine Environments“. In IMOG 2023. European Association of Geoscientists & Engineers, 2023. http://dx.doi.org/10.3997/2214-4609.202333161.
Der volle Inhalt der QuelleBendle, J., C. Wang, Y. Yang, A. Hardman, A. Yamoah, A. Thorpe, I. Mandel et al. „Calibration of Bacterial 3-Hydroxy Fatty Acid-Based Paleoclimate Proxies in Global Soils, Marine Sediments and Lakes“. In 30th International Meeting on Organic Geochemistry (IMOG 2021). European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202134241.
Der volle Inhalt der QuelleHines, C. J., M. Petersen, M. Mendell, D. Milton, L. Larsson und W. Fisk. „146. Endotoxin and 3-Hydroxy Fatty Acid Analysis of Air and Dust Samples from an Office Building“. In AIHce 1998. AIHA, 1999. http://dx.doi.org/10.3320/1.2762528.
Der volle Inhalt der QuelleDalli, Jesmond, Ana Rodriguez, Bernd Spur und Charles Serhan. „Structure elucidation and biological evaluations of sulfido-conjugated specialized pro-resolving mediators“. In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/mqgv6628.
Der volle Inhalt der Quelle