Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „22~nm“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "22~nm" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "22~nm"
Bloomstein, T. M., Michael F. Marchant, Sandra Deneault, Dennis E. Hardy und Mordechai Rothschild. „22-nm immersion interference lithography“. Optics Express 14, Nr. 14 (2006): 6434. http://dx.doi.org/10.1364/oe.14.006434.
Der volle Inhalt der QuelleSadana, Devendra, Stephen W. Bedell, J. P. De Souza, Y. Sun, E. Kiewra, A. Reznicek, T. Adams et al. „CMOS Scaling Beyond 22 nm Node“. ECS Transactions 19, Nr. 5 (18.12.2019): 267–74. http://dx.doi.org/10.1149/1.3119551.
Der volle Inhalt der QuelleBuengener, Ralf, Carol Boye, Bryan N. Rhoads, Sang Y. Chong, Charu Tejwani, Sean D. Burns, Andrew D. Stamper et al. „Process Window Centering for 22 nm Lithography“. IEEE Transactions on Semiconductor Manufacturing 24, Nr. 2 (Mai 2011): 165–72. http://dx.doi.org/10.1109/tsm.2011.2106807.
Der volle Inhalt der QuelleParker, Matthew. „A sub-terahertz transceiver in 22 nm FinFET“. Nature Electronics 5, Nr. 3 (März 2022): 126. http://dx.doi.org/10.1038/s41928-022-00741-x.
Der volle Inhalt der QuelleKurd, Nasser, Muntaquim Chowdhury, Edward Burton, Thomas P. Thomas, Christopher Mozak, Brent Boswell, Praveen Mosalikanti et al. „Haswell: A Family of IA 22 nm Processors“. IEEE Journal of Solid-State Circuits 50, Nr. 1 (Januar 2015): 49–58. http://dx.doi.org/10.1109/jssc.2014.2368126.
Der volle Inhalt der QuelleHuang, Ru, HanMing Wu, JinFeng Kang, DeYuan Xiao, XueLong Shi, Xia An, Yu Tian et al. „Challenges of 22 nm and beyond CMOS technology“. Science in China Series F: Information Sciences 52, Nr. 9 (September 2009): 1491–533. http://dx.doi.org/10.1007/s11432-009-0167-9.
Der volle Inhalt der QuelleShiotani, Hideaki, Shota Suzuki, Dong Gun Lee, Patrick Naulleau, Yasuyuki Fukushima, Ryuji Ohnishi, Takeo Watanabe und Hiroo Kinoshita. „Dual Grating Interferometric Lithography for 22-nm Node“. Japanese Journal of Applied Physics 47, Nr. 6 (20.06.2008): 4881–85. http://dx.doi.org/10.1143/jjap.47.4881.
Der volle Inhalt der QuelleSeifert, N., B. Gill, S. Jahinuzzaman, J. Basile, V. Ambrose, Quan Shi, R. Allmon und A. Bramnik. „Soft Error Susceptibilities of 22 nm Tri-Gate Devices“. IEEE Transactions on Nuclear Science 59, Nr. 6 (Dezember 2012): 2666–73. http://dx.doi.org/10.1109/tns.2012.2218128.
Der volle Inhalt der QuelleZhang, Bo, Min Zhang und Tianhong Cui. „Low-cost shrink lithography with sub-22 nm resolution“. Applied Physics Letters 100, Nr. 13 (26.03.2012): 133113. http://dx.doi.org/10.1063/1.3697836.
Der volle Inhalt der QuelleLi, Zongru, Christopher Jarrett Elash, Chen Jin, Li Chen, Jiesi Xing, Zhiwu Yang und Shuting Shi. „Comparison of Total Ionizing Dose Effects in 22-nm and 28-nm FD SOI Technologies“. Electronics 11, Nr. 11 (01.06.2022): 1757. http://dx.doi.org/10.3390/electronics11111757.
Der volle Inhalt der QuelleDissertationen zum Thema "22~nm"
Bansal, Anil Kumar. „CMOS scaling considerations in sub 10-nm node multiple-gate FETS“. Thesis, IIT Delhi, 2019. http://eprint.iitd.ac.in:80//handle/2074/8046.
Der volle Inhalt der QuelleBaldauf, Tim. „Integration von Multi-Gate-Transistoren auf Basis einer 22 nm-Technologie“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-132044.
Der volle Inhalt der QuelleWithin the past 40 years the continuous scaling of planar MOSFETs was key to shrink the devices and to improve their performance. Techniques like mechanical stressing, rapid thermal annealing and in-situ doped epitaxial growing as well as novel materials, such as high-k-gate-oxide in combination with titanium nitride as metal-gate, has been introduced. However, short-channel-effects and increased scattering of electrical proper-ties significantly complicate the scaling of planar transistors. Thus, the planar MOSFETs gradually reached their limits of functionality with the current 28 nm technology node. For that reason, this work focuses on integration of multi-gate transistors based on a 22 nm technology, which show an improved gate control and allow a continuous scaling. Furthermore, the requirements of a stable and cost-efficient process as decisive condition for mass fabrication were always taken into account. The simulations of the tri-gate transistors present the first step toward a multi-gate technology. The process sequence differs from the planar one solely by a fin formation and offers the possibility of a hybrid 22 nm process. Also, the impact of crystal orientation, mechanical stress and superposition of electrical fields on the efficiency of multi-gate structures were analyzed for the tri-gate transistors. In a second step transistors with fully depleted channel regions were studied. Due to low channel doping they are showing a volume inversion, a higher carrier mobility and a lower sensitivity to random doping fluctuations, which are essential criteria for powerful multi-gate transistors. Reviewed structure variants include planar ultra-thin-body-SOI-MOSFETs, classic FinFETs with a tall, narrow fins and vertical nanowire transistors. Then advantages and disadvantages of the considered transistor structures have been observed for a medium to long term industrial use. For this purpose, an analysis of statistical fluctuations and the scaling-down to 14 nm technology was carried out. A summary of all results and an outlook to the transfer of concepts into mass fabrication complete this work
Hamioud, Karim. „Élaboration et caractérisation des interconnexions pour les nœuds technologiques CMOS 32 et 22 nm“. Lyon, INSA, 2010. http://www.theses.fr/2010ISAL0011.
Der volle Inhalt der Quelle[The overall performance of integrated circuits should grow by about 20% at each new technology node. The interconnects have to be involved in increasing the performance and specially the reduction of signal propagation. The use of porous ultra low-k dielectric is necessary for the Sub-45 nm generation. In a first step, a roadmap for the 32 nm BEOL is proposed. The elementary processes developments have demonstrated the functionality of a multi-level demonstrator at minimum design rules of 32 nm technology node. In second step, a mature 45 nm technology has enabled the integration study of porous dielectric k = 2. 3 and k = 2. 2 which are potential candidates, respectively, for the 32 and 22 nm technology nodes. The introduction of these materials in the BEOL architecture scheme improves circuit performance but the dielectric reliability is found damaged from the reference k = 2. 5 material. Consequently, after to have identified the different sources of the dielectric reliability degradation, a response to the reliability standard has allowed the definition of reliable architecture. This reliable architecture used a robust metal barrier TaN/Ta robust and an additional layer in the dielectric stack technology. This reliable and efficient architecture represents a good beginning for the future 32 and 22 nm BEOL technology nodes. ]
Öberg, Eric, und Gustav Kindeskog. „16 GS/s Continuous-Time ΣΔ Modulator in a 22 nm SOI Process : a Simulation and Feasibility Study“. Thesis, Linköpings universitet, Tekniska fakulteten, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-155781.
Der volle Inhalt der QuelleBauer, Heiner. „Dynamic instruction set extension of microprocessors with embedded FPGAs“. Master's thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-222858.
Der volle Inhalt der QuelleZunehmend komplexere Anwendungen und Besonderheiten moderner Halbleitertechnologien haben zu einer großen Nachfrage an leistungsfähigen und gleichzeitig sehr energieeffizienten Mikroprozessoren geführt. Konventionelle Architekturen versuchen den Befehlsdurchsatz durch Parallelisierung zu steigern und stellen anwendungsspezifische Befehlssätze oder Hardwarebeschleuniger zur Steigerung der Energieeffizienz bereit. Rekonfigurierbare Prozessoren ermöglichen ähnliche Performancesteigerungen und besitzen gleichzeitig den enormen Vorteil, dass die Spezialisierung auf eine bestimmte Anwendung nach der Herstellung erfolgen kann. In dieser Diplomarbeit wurde ein rekonfigurierbarer Mikroprozessor mit einem eng gekoppelten FPGA untersucht. Im Gegensatz zu früheren Forschungsansätzen wurde eine umfangreiche Entwurfsraumexploration der FPGA-Architektur im Zusammenhang mit einem kommerziellen 22nm Herstellungsprozess durchgeführt. Bisher verwendeten die meisten Forschungsprojekte entweder kommerzielle Architekturen, die nicht unbedingt auf diesen Anwendungsfall zugeschnitten sind, oder die vorgeschlagenen FGPA-Komponenten wurden nur unzureichend untersucht und charakterisiert. Jedoch ist gerade dieser Baustein ausschlaggebend für die Leistungsfähigkeit des gesamten Systems. Deshalb wurden im Rahmen dieser Arbeit über 200 verschiedene logische FPGA-Architekturen untersucht. Zur Modellierung wurden konkrete Schaltungstopologien und ein auf den Herstellungsprozess zugeschnittenes Modell zur Abschätzung der Layoutfläche verwendet. Generell wurden die gleichen Trends wie bei vorhergehenden und ähnlich umfangreichen Untersuchungen beobachtet. Auch hier wurden die Ergebnisse maßgeblich von der Größe der LUTs (engl. "Lookup Tables") und der Struktur des Routingnetzwerks bestimmt. Gleichzeitig wurde ein viel breiterer Bereich von Architekturen mit nahezu gleicher Effizienz identifiziert. Zur weiteren Evaluation wurde eine FPGA-Architektur mit 5-LUTs und 8 Logikelementen ausgewählt. Die Performance des ausgewählten Mikroprozessors, der auf einer erprobten Befehlssatzarchitektur aufbaut, wurde mit Ergebnissen eines 28nm Testchips abgeschätzt. Eine modifizierte Sammlung von akademischen Softwarewerkzeugen wurde verwendet, um Spezialbefehle auf die modellierte FPGA-Architektur abzubilden und eine Netzliste für die anschließende Simulation und Verifikation zu erzeugen. Für eine Reihe unterschiedlicher Anwendungs-Benchmarks wurde eine relative Leistungssteigerung zwischen 3 und 15 gegenüber dem ursprünglichen Prozessor ermittelt. Obwohl die vorgeschlagene FPGA-Architektur vergleichsweise primitiv ist und keinerlei arithmetische Erweiterungen besitzt, musste dabei, bis auf eine Ausnahme, kein überproportionaler Anstieg der Chipfläche in Kauf genommen werden. Die gewonnen Erkenntnisse zu den Abhängigkeiten zwischen den Architekturparametern, der entwickelte Ablauf für die Exploration und das konkrete Kostenmodell sind essenziell für weitere Verbesserungen der FPGA-Architektur. Die vorliegende Arbeit hat somit erfolgreich den Vorteil der untersuchten Systemarchitektur gezeigt und den Weg für mögliche Erweiterungen und Hardwareimplementierungen geebnet. Zusätzlich wurden eine Reihe von Optimierungen der Architektur und weitere potenziellen Forschungsansätzen aufgezeigt
Baldauf, Tim [Verfasser], Gerald [Akademischer Betreuer] Gerlach und Roland [Akademischer Betreuer] Stenzel. „Integration von Multi-Gate-Transistoren auf Basis einer 22 nm-Technologie / Tim Baldauf. Gutachter: Gerald Gerlach ; Roland Stenzel. Betreuer: Gerald Gerlach ; Roland Stenzel“. Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://d-nb.info/1068444916/34.
Der volle Inhalt der QuelleDelpeyroux, Francis. „Insertions dans l'antigène de surface du virus de l'hépatite B expression d'un épitote de neutralisation du poliovirus à la surface departicules de 22 nm“. Grenoble : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb37593763m.
Der volle Inhalt der QuelleDelpeyroux, Francis. „Insertions dans l'antigene de surface du virus de l'hepatite b : expression d'un epitope de neutralisation du poliovirus a la surface de particules de 22 nm“. Paris 7, 1987. http://www.theses.fr/1987PA077198.
Der volle Inhalt der QuelleLecat-Mathieu, de Boissac Capucine. „Developing radiation-hardening solutions for high-performance and low-power systems“. Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0413.
Der volle Inhalt der QuelleNew actors have accelerated the pace of putting new satellites into orbit, and other domains like the automotive industry are at the origin of this development. These new actors rely on advanced technologies, such as UTBB FD-SOI in order to be able to achieve the necessary performance to accomplish the tasks. Albeit disruptive in terms of intrinsic soft-error resistance, the growing density and complexity of spaceborne and automotive systems require an accurate characterization of technologies, as well as an adaptation of traditional hardening techniques. This PhD focuses on the study of radiation effects in advanced FD-SOI and bulk silicon processes, and on the research of innovative protection mechanisms. A custom, self-calibrating transient measurements structure with automated design flow is first presented, allowing for the characterization of four different technologies during accelerated tests. The soft-error response of 28~nm FD-SOI and 40~nm bulk logic and storage cells is then assessed through beam testing and with the help of TCAD simulations, allowing to study the influence of voltage, frequency scaling and the application of forward body biasing on sensitivity. Total ionizing dose is also investigated through the use of an on-chip monitoring block. The test results are then utilized to propose a novel hardening solution for system on chip, which gathers the monitoring structures into a real-time radiation environment assessment and a power management unit for power mode adjustments. Finally, as an extension of the SET sensors capability, an implementation of radiation monitors in a context of secure systems is proposed to detect and counteract laser attacks
Lallement, Guénolé. „Extension of socs mission capabilities by offering near-zero-power performances and enabling continuous functionality for Iot systems“. Electronic Thesis or Diss., Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0573.
Der volle Inhalt der QuelleRecent developments in the field of low voltage integrated circuits (IC) have paved the way towards energy efficient electronic devices in a booming global network called the internet-of-things (IoT) or the internet-of-everything (IoE). However, the sustainability of all these inter- connected sensors is still undermined by the constant need for either an on-board battery – that must be recharged or replaced – or an energy harvester with very limited power efficiency. The power consumption of present consumer electronic systems is fifty times higher than the energy available by cm 2-size harvester or limited to a few months on a small battery, thus hardly viable for lifetime solutions. Upcoming systems-on-chip (SoCs) must overcome the challenge of this energy gap by architecture optimizations from technology to system level. The technical approach of this work aims to demonstrate the feasibility of an efficient ultra-low-voltage (ULV) and ultra-low-power (ULP) SoC using exclusively latest industrial guidelines in 28 nm and 22 nm fully depleted silicon on insulator (FD-SOI) technologies. Several multi-power-domain SoCs based on ARM cores are implemented to demonstrate wake up strategies based on sensors inputs. By optimizing the system architecture, properly selecting and designing compo- nents with technology features chosen adequately, carefully tuning the implementation, a fully energy-optimized SoC is realized
Bücher zum Thema "22~nm"
IEEE, International Nonvolatile Memory Technology Conference (7th 1998 Albuquerque New Mexico). Seventh biennial IEEE Nonvolatile Memory Technology Conference: Proceedings : 1998 conference : June 22-24, 1998, Albuquerque, NM, USA. Piscataway, N.J: IEEE, 1998.
Den vollen Inhalt der Quelle findenIEEE Geoscience and Remote Sensing Society., Lasers and Electro-optics Society (Institute of Electrical and Electronics Engineers) und IEEE Microwave Theory and Techniques Society., Hrsg. Topical Symposium on Combined Optical-microwave Earth and Atmosphere Sensing: Conference proceedings, March 22-25, 1993, Albuquerque, NM. Piscataway, NJ: Institute of Electrical and Electronics Engineers, 1993.
Den vollen Inhalt der Quelle findenWang, Guilei. Investigation on SiGe Selective Epitaxy for Source and Drain Engineering in 22 nm CMOS Technology Node and Beyond. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0046-6.
Der volle Inhalt der QuelleSymposium, on Time-of-Flight Diffraction at Pulsed Neutron Sources (1993 Albuquerque N. M. ). Proceedings of the Symposium on Time-of-Flight Diffraction at Pulsed Neutron Sources: At Albuquerque Convention Center, Albuquerque, NM, May 22-28, 1993. Buffalo, NY: American Crystallographic Association, 1994.
Den vollen Inhalt der Quelle findenCenter for Nonlinear Studies. International Conference. Nonlinearity in materials science: Proceedings of the twelfth annual International Conference of the Center for Nonlinear Studies, Los Alamos, NM 87545, USA, 18-22 May 1992. Herausgegeben von Bishop Alan, Ecke R und Gubernatis James. Amsterdam: North-Holland, 1993.
Den vollen Inhalt der Quelle findenCenter of Nonlinear Studies. International Conference. Nonlinearity in biology and medicine: Proceedings of theseventh annual international conference of the Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA, May 18-22, 1987. Herausgegeben von Perelson Alan S. New York: Elsevier, 1988.
Den vollen Inhalt der Quelle findenLabor, United States Congress House Committee on Education and. Civil Rights Restoration Act of 1985: Joint hearings before the Committee on Education and Labor, and the Subcommittee on Civil and Constitutional Rights of the Committee on the Judiciary, House of Representatives, Ninety-ninth Congress, first session on H.R. 700 ... hearings held in Philadelphia, PA, March 4; Washington, DC, March 7, 27, 28, and April 2; Atlanta, GA, March 11; Chicago, Il, March 15; Los Angeles, CA, March 22; and Santa Fe, NM, March 25, 1985. Washington: U.S. G.P.O., 1986.
Den vollen Inhalt der Quelle findenBalasinski, Artur. Design for Manufacturability: From 1d to 4D for 90 22 NM Technology Nodes. Springer New York, 2016.
Den vollen Inhalt der Quelle findenBalasinski, Artur. Design for Manufacturability: From 1D to 4D for 90–22 nm Technology Nodes. Springer, 2013.
Den vollen Inhalt der Quelle findenBalasinski, Artur. Design for Manufacturability: From 1D to 4D for 90-22 Nm Technology Nodes. Springer London, Limited, 2013.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "22~nm"
Valasa, Sresta, und Shubham Tayal. „Modeling and Analysis of Low Power High-Speed Phase Detector and Phase Frequency Detector Using Nano Dimensional MOS Transistors at 16 nm, 22 nm, 32 nm“. In Lecture Notes in Electrical Engineering, 1–11. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6780-1_1.
Der volle Inhalt der QuellePoiroux, T., F. Andrieu, O. Weber, C. Fenouillet-Béranger, C. Buj-Dufournet, P. Perreau, L. Tosti, L. Brevard und O. Faynot. „Ultrathin Body Silicon on Insulator Transistors for 22 nm Node and Beyond“. In Semiconductor-On-Insulator Materials for Nanoelectronics Applications, 155–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-15868-1_8.
Der volle Inhalt der QuelleDelwar, Tahesin Samira, Sourav Biswas und Anindya Jana. „Realization of hybrid single electron transistor based low power circuits in 22 nm technology“. In Computational Science and Engineering, 27–32. CRC Press/Balkema, P.O. Box 11320, 2301 EH Leiden, The Netherlands, e-mail: Pub.NL@taylorandfrancis.com, www.crcpress.com – www.taylorandfrancis.com: CRC Press, 2016. http://dx.doi.org/10.1201/9781315375021-7.
Der volle Inhalt der QuelleCordova, David, Wim Cops, Yann Deval, François Rivet, Herve Lapuyade, Nicolas Nodenot und Yohan Piccin. „Low-Power High-Speed ADCs for ADC-Based Wireline Receivers in 22 nm FDSOI“. In VLSI-SoC: Design Trends, 1–19. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81641-4_1.
Der volle Inhalt der QuelleImtiaz, Shamim, und Ruqaiya Khanam. „Design and Analysis Delay of FinFET and CMOS 6T SRAM Using 22 nm Technology“. In Studies in Autonomic, Data-driven and Industrial Computing, 449–60. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-5435-3_32.
Der volle Inhalt der QuelleKannaujiya, Aryan, Narendra Yadava, Mangal Deep Gupta und Rajeev Kumar Chauhan. „Improvement of Leakage Current in Double Pocket FDSOI 22 nm Transistor Using Gate Metal Arrangement“. In Lecture Notes in Electrical Engineering, 227–35. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0312-0_23.
Der volle Inhalt der QuelleVasudeva, G., und B. V. Uma. „Two-Stage Folded Resistive String 12-Bit Digital to Analog Converter Using 22-nm FINFET“. In Sustainable Communication Networks and Application, 119–37. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6605-6_8.
Der volle Inhalt der QuelleProuvée, J., G. Mangraviti, B. Debaillie, P. Wambacq, D. Borggreve, R. Ciocoveanu, H. Fredriksson et al. „Digital Beamforming Transceiver Design in 22 nm FD-SOI Technology for 39 GHz 5G Access“. In Technologies Enabling Future Mobile Connectivity & Sensing, 31–55. New York: River Publishers, 2023. http://dx.doi.org/10.1201/9781032633039-4.
Der volle Inhalt der QuelleWang, Guilei. „Introduction“. In Investigation on SiGe Selective Epitaxy for Source and Drain Engineering in 22 nm CMOS Technology Node and Beyond, 1–7. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0046-6_1.
Der volle Inhalt der QuelleWang, Guilei. „Strained Silicon Technology“. In Investigation on SiGe Selective Epitaxy for Source and Drain Engineering in 22 nm CMOS Technology Node and Beyond, 9–21. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0046-6_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "22~nm"
Bakker, Jelle H. T., Mark S. Oude Alink, Jurriaan Schmitz und Bram Nauta. „Characterisation of Photodiodes in 22 nm FDSOI at 850 nm“. In ESSDERC 2023 - IEEE 53rd European Solid-State Device Research Conference (ESSDERC). IEEE, 2023. http://dx.doi.org/10.1109/essderc59256.2023.10268483.
Der volle Inhalt der QuelleBuengener, Ralf, Carol Boye, Bryan N. Rhoads, Sang Y. Chong, Charu Tejwani, Sean D. Burns, Andrew D. Stamper et al. „Process Window Centering for 22 nm lithography“. In 2010 21st Annual IEEE/SEMI Advanced Semiconductor Manufacturing Conference (ASMC). IEEE, 2010. http://dx.doi.org/10.1109/asmc.2010.5551447.
Der volle Inhalt der QuelleSeo, Soon-Cheon, Chih-Chao Yang, Chun-Chen Yeh, Bala Haran, Dave Horak, Susan Fan, Charles Koburger et al. „Copper contact metallization for 22 nm and beyond“. In 2009 IEEE International Interconnect Technology Conference - IITC. IEEE, 2009. http://dx.doi.org/10.1109/iitc.2009.5090326.
Der volle Inhalt der QuelleAuth, Chris. „22-nm fully-depleted tri-gate CMOS transistors“. In 2012 IEEE Custom Integrated Circuits Conference - CICC 2012. IEEE, 2012. http://dx.doi.org/10.1109/cicc.2012.6330657.
Der volle Inhalt der QuelleBourdillon, Antony J., Gwyn P. Williams, Yuli Vladimirsky und Chris B. Boothroyd. „22-nm lithography using near-field x rays“. In Microlithography 2003, herausgegeben von Roxann L. Engelstad. SPIE, 2003. http://dx.doi.org/10.1117/12.484989.
Der volle Inhalt der QuelleTIAN, Ming, Cuiqin XU und Haibo LEI. „Advanced 22 nm FD-SOI devices integration platform“. In 2019 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S). IEEE, 2019. http://dx.doi.org/10.1109/s3s46989.2019.9320694.
Der volle Inhalt der QuelleShiotani, Hideaki, Shota Suzuki, Dong Gun Lee, Patrick Naulleau, Takeo Watanabe, Yasuyuki Fukushima, Ryuji Ohnishi und Hiroo Kinoshita. „Dual grating interferometric lithography for 22-nm node“. In 2007 Digest of papers Microprocesses and Nanotechnology. IEEE, 2007. http://dx.doi.org/10.1109/imnc.2007.4456097.
Der volle Inhalt der QuelleGambino, J. P. „Copper interconnect technology for the 22 nm node“. In 2011 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA). IEEE, 2011. http://dx.doi.org/10.1109/vtsa.2011.5872228.
Der volle Inhalt der QuelleYang, Edward, und Torsten Lehmann. „High Gain Operational Amplifiers in 22 nm CMOS“. In 2019 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2019. http://dx.doi.org/10.1109/iscas.2019.8702381.
Der volle Inhalt der QuelleAfifah Maheran, A. H., P. S. Menon, I. Ahmad, H. A. Elgomati, B. Y. Majlis und F. Salehuddin. „Scaling down of the 32 nm to 22 nm gate length NMOS transistor“. In 2012 10th IEEE International Conference on Semiconductor Electronics (ICSE). IEEE, 2012. http://dx.doi.org/10.1109/smelec.2012.6417117.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "22~nm"
Becher, Julie, Samuel Beal, Susan Taylor, Katerina Dontsova und Dean Wilcox. Photo-transformation of aqueous nitroguanidine and 3-nitro-1,2,4-triazol-5-one : emerging munitions compounds. Engineer Research and Development Center (U.S.), August 2021. http://dx.doi.org/10.21079/11681/41743.
Der volle Inhalt der QuellePerkins, Dustin. Invasive exotic plant monitoring at Fossil Butte National Monument: 2021 field season. Herausgegeben von Alice Wondrak Biel. National Park Service, September 2022. http://dx.doi.org/10.36967/2288496.
Der volle Inhalt der Quelle