Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „16S rDNA profiling“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "16S rDNA profiling" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "16S rDNA profiling"
Gu, F., Y. Li, C. Zhou, D. T. W. Wong, C. M. Ho, F. Qi und W. Shi. „Bacterial 16S rRNA/rDNA Profiling in the Liquid Phase of Human Saliva“. Open Dentistry Journal 3, Nr. 1 (28.04.2009): 80–84. http://dx.doi.org/10.2174/1874210600903010080.
Der volle Inhalt der QuelleWood, Jacqueline, Karen P. Scott, Gorazd Avguštin, C. James Newbold und Harry J. Flint. „Estimation of the Relative Abundance of DifferentBacteroides and Prevotella Ribotypes in Gut Samples by Restriction Enzyme Profiling of PCR-Amplified 16S rRNA Gene Sequences“. Applied and Environmental Microbiology 64, Nr. 10 (01.10.1998): 3683–89. http://dx.doi.org/10.1128/aem.64.10.3683-3689.1998.
Der volle Inhalt der QuelleGalovic, Vladislava, Milan Drekic, Sreten Vasic, Sinisa Andrasev, Sasa Pekec, Dejan Stojanovic und Verica Vasic. „Mitochondrial 16s rDNA profiling and phylogenetic analysis suggest genetic diversity of ash weevil (Stereonichus fraxini De Geer) in Serbia“. Genetika 51, Nr. 2 (2019): 675–86. http://dx.doi.org/10.2298/gensr1902675g.
Der volle Inhalt der QuelleAdesetan, Titilayo O., Moses O. Efuntoye und Olubukola O. Babalola. „Genotypic Profiling of Bacillus cereus Recovered from Some Retail Foods in Ogun State, Nigeria, and Their Phylogenetic Relationship“. International Journal of Microbiology 2020 (14.09.2020): 1–9. http://dx.doi.org/10.1155/2020/3750948.
Der volle Inhalt der QuelleRaju, Sajan C., Sonja Lagström, Pekka Ellonen, Willem M. de Vos, Johan G. Eriksson, Elisabete Weiderpass und Trine B. Rounge. „Reproducibility and repeatability of six high-throughput 16S rDNA sequencing protocols for microbiota profiling“. Journal of Microbiological Methods 147 (April 2018): 76–86. http://dx.doi.org/10.1016/j.mimet.2018.03.003.
Der volle Inhalt der QuelleDickinson, Danielle N., Myron T. La Duc, William E. Haskins, Igor Gornushkin, James D. Winefordner, David H. Powell und Kasthuri Venkateswaran. „Species Differentiation of a Diverse Suite of Bacillus Spores by Mass Spectrometry-Based Protein Profiling“. Applied and Environmental Microbiology 70, Nr. 1 (Januar 2004): 475–82. http://dx.doi.org/10.1128/aem.70.1.475-482.2004.
Der volle Inhalt der QuelleRogers, G. B., C. A. Hart, J. R. Mason, M. Hughes, M. J. Walshaw und K. D. Bruce. „Bacterial Diversity in Cases of Lung Infection in Cystic Fibrosis Patients: 16S Ribosomal DNA (rDNA) Length Heterogeneity PCR and 16S rDNA Terminal Restriction Fragment Length Polymorphism Profiling“. Journal of Clinical Microbiology 41, Nr. 8 (01.08.2003): 3548–58. http://dx.doi.org/10.1128/jcm.41.8.3548-3558.2003.
Der volle Inhalt der QuelleApajalahti, Juha H. A., Anu Kettunen, Michael R. Bedford und William E. Holben. „Percent G+C Profiling Accurately Reveals Diet-Related Differences in the Gastrointestinal Microbial Community of Broiler Chickens“. Applied and Environmental Microbiology 67, Nr. 12 (01.12.2001): 5656–67. http://dx.doi.org/10.1128/aem.67.12.5656-5667.2001.
Der volle Inhalt der QuelleWood, J., KP Scott, G. Avguštin, CJ Newbold, F. McIntosh und HJ Flint. „A 16S rDNA-based molecular profiling approach for studying relative changes in ruminal bacterial populations“. Reproduction Nutrition Development 37, Suppl. 1 (1997): 30–31. http://dx.doi.org/10.1051/rnd:19970710.
Der volle Inhalt der QuelleScheldeman, Patsy, Marina Rodríguez-Díaz, Johan Goris, Annelies Pil, Elke De Clerck, Lieve Herman, Paul De Vos, Niall A. Logan und Marc Heyndrickx. „Bacillus farraginis sp. nov., Bacillus fortis sp. nov. and Bacillus fordii sp. nov., isolated at dairy farms“. International Journal of Systematic and Evolutionary Microbiology 54, Nr. 4 (01.07.2004): 1355–64. http://dx.doi.org/10.1099/ijs.0.63095-0.
Der volle Inhalt der QuelleDissertationen zum Thema "16S rDNA profiling"
Chen, Hung-Hsuan, und 陳弘軒. „Studies on Gene Map of 16S rDNA and Protein Profiling of Tetrodotoxin-Producing Bacteria“. Thesis, 2015. http://ndltd.ncl.edu.tw/handle/49411481138429021460.
Der volle Inhalt der Quelle亞洲大學
保健營養生技學系
103
Tetrodotoxin (TTX) is a low-molecular weight and non-protein neurotoxin. About the TTX-bearing organisms, according to the results of previous studies, TTX was well known produced by exogenously. Those who support the idea of exogenous origins of TTX, believe that TTX is produced by bacteria and acquired through one of two modes. First, the bacteria produce TTX, which is then transferred up through the food chain. In the main studies on Tetrodotoxin contained with species of TTX-bearing organisms, identification of TTX-producing bacteria, ability in producing TTX and medical use of TTX , but few of discussion on the possibly toxic genes and proteins. There explore a value between the TTX-producing bacteria and Tetrodotoxin. Gene analysis techniques are commonly used for bacteria identification because technological advances in molecular biology. In this study we used primer set 8F and U1492R to amplified 16S rDNA, according to the experimental results, we successfully established 16S rDNA sequences data, contained wih 11 strains of TTX-producing bacteria and 20 strains of non TTX-producing bacteria. All of these 16S rDNA sequences had been submitted to NCBI and provided Accession numbers from GenBank. We have explored the possibly species-specific sensitivity of TTX-producing bacteria by DNAMAN for sequence alignment and MEGA4 for phylogenetic tree based on 16S rDNA. The experimental results show that a high degree of consistency of TTX-producing bacteria and non TTX-producing bacteria, there was no specific fragment in 16S rDNA. Therefore, this method does not suitable for the identification of TTX-producing bacteria. In the second chapter, we identification of TTX-producing and non-producing bacteria, and the specificity TTX-associated protein of the TTX-producing bacteria based on SDS-PAGE. Protein separation by SDS-PAGE can be used to estimate relative molecular mass, to determine the relative abundance of major proteins in a sample, and to determine the distribution of proteins among fractions. According to the experimental results show that, TTX-producing bacteria have different species-specific bands in the molecular weight 120.0 and 41.1 kDa. T-014 and T-015 have these species-specific bands, but does not exist in non TTX-producing bacteria. So we surmise that the species-specific bands of T-014 and 015 are the specificity TTX-associated protein in TTX-producing bacteria. Based on the above, we can classify as a first and rapid identification of TTX-producing and non-producing bacteria.
Vodolánová, Lucie. „Bakteriom stolice při terapii dětských neinfekčních onemocnění“. Master's thesis, 2021. http://www.nusl.cz/ntk/nusl-445767.
Der volle Inhalt der QuellePurwandari, Anggraini Ratih, und 朴萬達. „Profiling of Intestinal Microbial Diversity by PCR-DGGE Genes Coding for 16S rDNA and Immunity Status of the Orange Spotted Grouper (Epinephelus coioides) Following Probiotic Bacillus subtilis Administration“. Thesis, 2012. http://ndltd.ncl.edu.tw/handle/53475441628459158308.
Der volle Inhalt der Quelle國立中山大學
海洋生物研究所
101
Groupers are an important mariculture fish in Taiwan and Southeast Asian countries. The rapidly growing orange spotted grouper (Epinephelus coioides) has experienced relatively severe bacterial disease problems. The proliferation of pathogens in fish can be suppressed by commensal microbiota. In this context, probiotic seem to offer an attractive alternative. Bacillus subtilisis a probiotic bacteriumthat is administered in diet to suppress proliferation of pathogens. In the present study, E.coioideswere fed for 6 months with diets containing B.subtilis at 0 (control), 0.1 % and 1 %. Percent weight gain and feed efficiency of the 0.1 and 1 % groups were significantlybetter than the control group. The innate cellular response, respiratory burst of the fish fed the 1 % and 0.1 % diet was significantly higher compared to the control group on 10 or 20 days after feeding, and even moresignificanton 30 days.ProbioticBacillus subtilis increased the fish’s intestinal microbial diversity as measured by visible band number and Shannon diversity indexin DGGE analysis. Probiotic Bacillus subtilis also stimulated the population of bacterial species likePaenibacillussp,Lactobacillus oenistrain 59 b, and Methilacidophiluminfernorumstrain V4 that beneficial for Epinephelus coioides. The best dose of probiotic Bacillus subtilis based on growth performances, innate cellular responses and profile of microbiota in fish intestines is 0.1 %, which showed equal efficacy as the 1% diet.