Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: 15N Labeling.

Zeitschriftenartikel zum Thema „15N Labeling“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "15N Labeling" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Mylne, Joshua S., und David J. Craik. „15N cyclotides by whole plant labeling“. Biopolymers 90, Nr. 4 (2008): 575–80. http://dx.doi.org/10.1002/bip.21012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Xie, Wancui, Min Li, Lin Song, Rui Zhang, Xiaoqun Hu, Chengzhu Liang und Xihong Yang. „15N Stable Isotope Labeling PSTs in Alexandrium minutum for Application of PSTs as Biomarker“. Toxins 11, Nr. 4 (08.04.2019): 211. http://dx.doi.org/10.3390/toxins11040211.

Der volle Inhalt der Quelle
Annotation:
The dinoflagellate Alexandrium minutum (A. minutum) which can produce paralyticshellfish toxins (PSTs) is often used as a model to study the migration, biotransformation,accumulation, and removal of PSTs. However, the mechanism is still unclear. To provide a new toolfor related studies, we tried to label PSTs metabolically with 15N stable isotope to obtain 15N-PSTsinstead of original 14N, which could be treated as biomarker on PSTs metabolism. We then culturedthe A. minutum AGY-H46 which produces toxins GTX1-4 in f/2 medium of different 15N/Pconcentrations. The 15N-PSTs’ toxicity and toxin profile were detected. Meanwhile, the 15N labelingabundance and 15N atom number of 15N-PSTs were identified. The 14N of PSTs produced by A.minutum can be successfully replaced by 15N, and the f/2 medium of standard 15N/P concentrationwas the best choice in terms of the species’ growth, PST profile, 15N labeling result and experimentcost. After many (>15) generations, the 15N abundance in PSTs extract reached 82.36%, and the 15Natom number introduced into GTX1-4 might be 4–6. This paper innovatively provided the initialevidence that 15N isotope application of labeling PSTs in A. minutum is feasible. The 15N-PSTs asbiomarker can be applied and provide further information on PSTs metabolism.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Deev, Sergey L., Igor A. Khalymbadzha, Tatyana S. Shestakova, Valery N. Charushin und Oleg N. Chupakhin. „15N labeling and analysis of 13C–15N and 1H–15N couplings in studies of the structures and chemical transformations of nitrogen heterocycles“. RSC Advances 9, Nr. 46 (2019): 26856–79. http://dx.doi.org/10.1039/c9ra04825a.

Der volle Inhalt der Quelle
Annotation:
This review provides a generalization of effective examples of 15N labeling followed by an analysis of JCN and JHN couplings in solution as a tool to study the structural aspects and pathways of chemical transformations in nitrogen heterocycles.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Zhang, Chunchao, Yifan Liu und Philip C. Andrews. „Quantification of histone modifications using 15N metabolic labeling“. Methods 61, Nr. 3 (Juni 2013): 236–43. http://dx.doi.org/10.1016/j.ymeth.2013.02.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Sun, Zhaoan, Shuxia Wu, Biao Zhu, Yiwen Zhang, Roland Bol, Qing Chen und Fanqiao Meng. „Variation of 13C and 15N enrichments in different plant components of labeled winter wheat (Triticum aestivum L.)“. PeerJ 7 (02.10.2019): e7738. http://dx.doi.org/10.7717/peerj.7738.

Der volle Inhalt der Quelle
Annotation:
Information on the homogeneity and distribution of 13carbon (13C) and nitrogen (15N) labeling in winter wheat (Triticum aestivum L.) is limited. We conducted a dual labeling experiment to evaluate the variability of 13C and 15N enrichment in aboveground parts of labeled winter wheat plants. Labeling with 13C and 15N was performed on non-nitrogen fertilized (−N) and nitrogen fertilized (+N, 250 kg N ha−1) plants at the elongation and grain filling stages. Aboveground parts of wheat were destructively sampled at 28 days after labeling. As winter wheat growth progressed, δ13C values of wheat ears increased significantly, whereas those of leaves and stems decreased significantly. At the elongation stage, N addition tended to reduce the aboveground δ13C values through dilution of C uptake. At the two stages, upper (newly developed) leaves were more highly enriched with 13C compared with that of lower (aged) leaves. Variability between individual wheat plants and among pots at the grain filling stage was smaller than that at the elongation stage, especially for the −N treatment. Compared with those of 13C labeling, differences in 15N excess between aboveground components (leaves and stems) under 15N labeling conditions were much smaller. We conclude that non-N fertilization and labeling at the grain filling stage may produce more uniformly 13C-labeled wheat materials, whereas the materials were more highly 13C-enriched at the elongation stage, although the δ13C values were more variable. The 15N-enriched straw tissues via urea fertilization were more uniformly labeled at the grain filling stage compared with that at the elongation stage.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ambrosano, Edmilson José, Paulo Cesar Ocheuze Trivelin, Heitor Cantarella, Raffaella Rossetto, Takashi Muraoka, José Albertino Bendassolli, Gláucia Maria Bovi Ambrosano, Luciano Grassi Tamiso, Felipe de Campos Vieira und Ithamar Prada Neto. „Nitrogen-15 labeling of Crotalaria juncea green manure“. Scientia Agricola 60, Nr. 1 (Februar 2003): 181–84. http://dx.doi.org/10.1590/s0103-90162003000100027.

Der volle Inhalt der Quelle
Annotation:
Most studies dealing with the utilization of 15N labeled plant material do not present details about the labeling technique. This is especially relevant for legume species since biological nitrogen fixation difficults plant enrichment. A technique was developed for labeling leguminous plant tissue with 15N to obtain labeled material for nitrogen dynamics studies. Sun hemp (Crotalaria juncea L.) was grown on a Paleudalf, under field conditions. An amount of 58.32 g of urea with 70.57 ± 0.04 atom % 15N was sprayed three times on plants grown on eight 6-m²-plots. The labelled material presented 2.412 atom % 15N in a total dry matter equivalent to 9 Mg ha-1 This degree of enrichment enables the use of the green manure in pot or field experiments requiring 15N-labeled material.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Pavlik, James W., Chuchawin Changtong und Vikki M. Tsefrikas. „Photochemistry of Phenyl-Substituted 1,2,4-Thiadiazoles.15N-Labeling Studies‡“. Journal of Organic Chemistry 68, Nr. 12 (Juni 2003): 4855–61. http://dx.doi.org/10.1021/jo0340915.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Heikkinen, Harri A., Sofia M. Backlund und Hideo Iwaï. „NMR Structure Determinations of Small Proteins Using only One Fractionally 20% 13C- and Uniformly 100% 15N-Labeled Sample“. Molecules 26, Nr. 3 (01.02.2021): 747. http://dx.doi.org/10.3390/molecules26030747.

Der volle Inhalt der Quelle
Annotation:
Uniformly 13C- and 15N-labeled samples ensure fast and reliable nuclear magnetic resonance (NMR) assignments of proteins and are commonly used for structure elucidation by NMR. However, the preparation of uniformly labeled samples is a labor-intensive and expensive step. Reducing the portion of 13C-labeled glucose by a factor of five using a fractional 20% 13C- and 100% 15N-labeling scheme could lower the total chemical costs, yet retaining sufficient structural information of uniformly [13C, 15N]-labeled sample as a result of the improved sensitivity of NMR instruments. Moreover, fractional 13C-labeling can facilitate reliable resonance assignments of sidechains because of the biosynthetic pathways of each amino-acid. Preparation of only one [20% 13C, 100% 15N]-labeled sample for small proteins (<15 kDa) could also eliminate redundant sample preparations of 100% 15N-labeled and uniformly 100% [13C, 15N]-labeled samples of proteins. We determined the NMR structures of a small alpha-helical protein, the C domain of IgG-binding protein A from Staphylococcus aureus (SpaC), and a small beta-sheet protein, CBM64 module using [20% 13C, 100% 15N]-labeled sample and compared with the crystal structures and the NMR structures derived from the 100% [13C, 15N]-labeled sample. Our results suggest that one [20% 13C, 100% 15N]-labeled sample of small proteins could be routinely used as an alternative to conventional 100% [13C, 15N]-labeling for backbone resonance assignments, NMR structure determination, 15N-relaxation analysis, and ligand–protein interaction.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Castillo, L., L. Beaumier, A. M. Ajami und V. R. Young. „Whole body nitric oxide synthesis in healthy men determined from [15N] arginine-to-[15N]citrulline labeling.“ Proceedings of the National Academy of Sciences 93, Nr. 21 (15.10.1996): 11460–65. http://dx.doi.org/10.1073/pnas.93.21.11460.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

McClatchy, Daniel B., Meng-Qiu Dong, Christine C. Wu, John D. Venable und John R. Yates. „15N Metabolic Labeling of Mammalian Tissue with Slow Protein Turnover“. Journal of Proteome Research 6, Nr. 5 (Mai 2007): 2005–10. http://dx.doi.org/10.1021/pr060599n.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Lopukhov, L. V., A. A. Ponomareva und L. O. Yagodina. „Selective 15N labeling of barstar in a T7 polymerase system“. Biophysics 52, Nr. 1 (Februar 2007): 13–15. http://dx.doi.org/10.1134/s0006350907010034.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Levic, Jasmin, und Ronald Micura. „Syntheses of 15N-labeled pre-queuosine nucleobase derivatives“. Beilstein Journal of Organic Chemistry 10 (18.08.2014): 1914–18. http://dx.doi.org/10.3762/bjoc.10.199.

Der volle Inhalt der Quelle
Annotation:
Pre-queuosine or queuine (preQ1) is a guanine derivative that is involved in the biosynthetic pathway of the hypermodified tRNA nucleoside queuosine (Que). The core structure of preQ1 is represented by 7-(aminomethyl)-7-deazaguanine (preQ1 base). Here, we report the synthesis of three preQ1 base derivatives with complementary 15N-labeling patterns, utilizing [15N]-KCN, [15N]-phthalimide, and [15N3]-guanidine as cost-affordable 15N sources. Such derivatives are required to explore the binding process of the preQ1 base to RNA targets using advanced NMR spectroscopic methods. PreQ1 base specifically binds to bacterial mRNA domains and thereby regulates genes that are required for queuosine biosynthesis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Kamaike, Kazuo, Mitsuhisa Isobe, Yoshihiro Kayama und Etsuko Kawashima. „Efficient Synthesis of [2-15N]Guanosine and 2′-Deoxy[2′-15N]Guanosine Derivatives Using N-(tert-Butyldimethylsilyl)[15N]Phthalimide as a15N-Labeling Reagent“. Nucleosides, Nucleotides and Nucleic Acids 25, Nr. 1 (Januar 2006): 29–35. http://dx.doi.org/10.1080/15257770500377771.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Lanquar, Viviane, Lauriane Kuhn, Françoise Lelièvre, Mehdi Khafif, Christelle Espagne, Christophe Bruley, Hélène Barbier-Brygoo, Jérôme Garin und Sébastien Thomine. „15N-Metabolic labeling for comparative plasma membrane proteomics in Arabidopsis cells“. PROTEOMICS 7, Nr. 5 (März 2007): 750–54. http://dx.doi.org/10.1002/pmic.200600791.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Kupferschmitt, G., J. Schmidt, Th Schmidt, B. Fera, F. Buck und H. Riiterjans. „15N labeling of oligodeoxynucleotides for NMR studies of DNA-ligand interactions“. Nucleic Acids Research 15, Nr. 15 (1987): 6225–41. http://dx.doi.org/10.1093/nar/15.15.6225.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Marchant, Hannah K., Wiebke Mohr und Marcel MM Kuypers. „Recent advances in marine N-cycle studies using 15N labeling methods“. Current Opinion in Biotechnology 41 (Oktober 2016): 53–59. http://dx.doi.org/10.1016/j.copbio.2016.04.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Stahl, Vanessa Maliya, Wolfram Beyschlag und Christiane Werner. „Dynamic niche sharing in dry acidic grasslands -a 15N-labeling experiment“. Plant and Soil 344, Nr. 1-2 (08.03.2011): 389–400. http://dx.doi.org/10.1007/s11104-011-0758-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Scott, David E., Yurena Yanes, Betsie B. Rothermel, Melissa Pilgrim und Christopher S. Romanek. „Efficacy of Labeling Wetlands with Enriched 15N to Determine Amphibian Dispersal“. Wetlands 35, Nr. 2 (17.01.2015): 349–56. http://dx.doi.org/10.1007/s13157-015-0624-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Venters, Ronald A., Chih-Chin Huang, Bennett T. Farmer, Ronald Trolard, Leonard D. Spicer und Carol A. Fierke. „High-level 2H/13C/15N labeling of proteins for NMR studies“. Journal of Biomolecular NMR 5, Nr. 4 (Juni 1995): 339–44. http://dx.doi.org/10.1007/bf00182275.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Chugh, Jeetender, und Ramakrishna V. Hosur. „Spectroscopic labeling of A, S/T in the 1H–15N HSQC spectrum of uniformly (15N–13C) labeled proteins“. Journal of Magnetic Resonance 194, Nr. 2 (Oktober 2008): 289–94. http://dx.doi.org/10.1016/j.jmr.2008.07.022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Shortle, D. „Assignment of Amino Acid Type in 1H-15N Correlation Spectra by Labeling with 14N-Amino Acids“. Journal of Magnetic Resonance, Series B 105, Nr. 1 (September 1994): 88–90. http://dx.doi.org/10.1006/jmrb.1994.1106.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Filiou, Michaela D., Magdalena Soukupova, Christiane Rewerts, Christian Webhofer, Chris W. Turck und Giuseppina Maccarrone. „Variability assessment of 15N metabolic labeling-based proteomics workflow in mouse plasma and brain“. Molecular BioSystems 11, Nr. 6 (2015): 1536–42. http://dx.doi.org/10.1039/c4mb00702f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Nasuno, Ryo, Yuki Yoshikawa und Hiroshi Takagi. „The analytical method to identify the nitrogen source for nitric oxide synthesis“. Bioscience, Biotechnology, and Biochemistry 85, Nr. 2 (31.12.2020): 211–14. http://dx.doi.org/10.1093/bbb/zbaa046.

Der volle Inhalt der Quelle
Annotation:
ABSTRACT Nitric oxide (NO) is a ubiquitous signaling molecule synthesized from various nitrogen sources. An analytical method to identify a nitrogen source for NO generation was developed using liquid chromatography with tandem mass spectrometry in combination with stable isotope labeling. Our method successfully detected the 15N-labeled NO-containing compound generated from 15N-labeled substrate nitrite in vitro and in vivo.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Shmyreva, N. Ya, A. A. Zavalin, O. A. Sokolov und V. A. Litvinsky. „Nitrogen Consumption in a Second-Year Perennial Legume–Grass Mixture (15N Labeling)“. Russian Agricultural Sciences 45, Nr. 5 (September 2019): 449–52. http://dx.doi.org/10.3103/s1068367419050148.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Nakabayashi, Ryo, Tetsuya Mori, Noriko Takeda, Kiminori Toyooka, Hiroshi Sudo, Hiroshi Tsugawa und Kazuki Saito. „Metabolomics with 15N Labeling for Characterizing Missing Monoterpene Indole Alkaloids in Plants“. Analytical Chemistry 92, Nr. 8 (21.02.2020): 5670–75. http://dx.doi.org/10.1021/acs.analchem.9b03860.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Whalen, J. „Labeling earthworms uniformly with 13C and 15N: implications for monitoring nutrient fluxes“. Soil Biology and Biochemistry 34, Nr. 12 (Dezember 2002): 1913–18. http://dx.doi.org/10.1016/s0038-0717(02)00207-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Milecki, Jan. „ChemInform Abstract: Specific Labeling of Nucleosides and Nucleotides with 13C and 15N“. ChemInform 33, Nr. 42 (19.05.2010): no. http://dx.doi.org/10.1002/chin.200242262.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Sitarska, Agnieszka, Lukasz Skora, Julia Klopp, Susan Roest, César Fernández, Binesh Shrestha und Alvar D. Gossert. „Affordable uniform isotope labeling with 2H, 13C and 15N in insect cells“. Journal of Biomolecular NMR 62, Nr. 2 (01.05.2015): 191–97. http://dx.doi.org/10.1007/s10858-015-9935-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Curley, Robert W., Michael J. Panigot, Andrew P. Hansen und Stephen W. Fesik. „Stereospecific assignments of glycine in proteins by stereospecific deuteration and 15N labeling“. Journal of Biomolecular NMR 4, Nr. 3 (Mai 1994): 335–40. http://dx.doi.org/10.1007/bf00179344.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Arcand, Melissa M., J. Diane Knight und Richard E. Farrell. „Temporal dynamics of nitrogen rhizodeposition in field pea as determined by 15N labeling“. Canadian Journal of Plant Science 93, Nr. 5 (September 2013): 941–50. http://dx.doi.org/10.4141/cjps2013-050.

Der volle Inhalt der Quelle
Annotation:
Arcand, M. M., Knight, J. D. and Farrell, R. E. 2013. Temporal dynamics of nitrogen rhizodeposition in field pea as determined by 15 N labeling. Can. J. Plant Sci. 93: 941–950. Assessing the contribution of symbiotically fixed N2 to soil from pulse crops necessitates a full accounting of the total crop residue N remaining in the field after seed harvest. Below-ground N, including root and rhizodeposit N, comprises an important component of this total plant N balance – without it the N input to soil is underestimated. Under controlled conditions in a greenhouse, N in intact roots and N rhizodeposition were quantified in field pea (Pisum sativum L.) using the cotton-wick 15N labeling technique. Plants were supplied with 15N on a continuous basis and harvested at the vegetative stage (nine leaves unfolded), flowering, and maturity. As the plants aged, the 15N enrichment in the rhizosphere soil decreased, whereas that in the bulk soil increased, suggesting that N released as root exudates comprised a more important proportion of N rhizodeposition in plants at the early vegetative stage compared with mature plants. In mature plants, N rhizodeposition was comprised predominantly of N associated with root turnover. The contribution of N rhizodeposition recovered in soil to the total plant N balance decreased from 17.8% at the vegetative stage harvest, to 12.3% at flowering, and finally to 7.5% at maturity. However, the total amount of root-derived N released to soil by pea increased with plant development. Below-ground N, including N rhizodeposition and N in intact roots contributed 11.3% to the total plant N balance of mature pea.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Hamadeh, Mazen J., und L. John Hoffer. „Effect of protein restriction on15N transfer from dietary [15N]alanine and [15N]Spirulina platensisinto urea“. American Journal of Physiology-Endocrinology and Metabolism 281, Nr. 2 (01.08.2001): E349—E356. http://dx.doi.org/10.1152/ajpendo.2001.281.2.e349.

Der volle Inhalt der Quelle
Annotation:
Six normal men consumed a mixed test meal while adapted to high (1.5 g · kg−1· day−1) and low (0.3 g · kg−1· day−1) protein intakes. They completed this protocol twice: when the test meals included 3 mg/kg of [15N]alanine ([15N]Ala) and when they included 30 mg/kg of intrinsically labeled [15N] Spirulina platensis([15N]SPI). Six subjects with insulin-dependent diabetes mellitus (IDDM) receiving conventional insulin therapy consumed the test meal with added [15N]Ala while adapted to their customary high-protein diet. Protein restriction increased serum alanine, glycine, glutamine, and methionine concentrations and reduced those of leucine. Whether the previous diet was high or low in protein, there was a similar increase in serum alanine, methionine, and branched-chain amino acid concentrations after the test meal and a similar pattern of15N enrichment in serum amino acids for a given tracer. When [15N]Ala was included in the test meal,15N appeared rapidly in serum alanine and glutamine, to a minor degree in leucine and isoleucine, and not at all in other circulating amino acids. With [15N]SPI, there was a slow appearance of the label in all serum amino acids analyzed. Despite the different serum amino acid labeling, protein restriction reduced the postmeal transfer of dietary15N in [15N]Ala or [15N]SPI into [15N]urea by similar amounts (38 and 43%, respectively, not significant). The response of the subjects with IDDM was similar to that of the normal subjects. Information about adaptive reductions in dietary amino acid catabolism obtained by adding [15N]Ala to a test meal appears to be equivalent to that obtained using an intrinsically labeled protein tracer.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Quan, Zhi, Bin Huang, Caiyan Lu, Yi Shi, Xin Chen, Jianbin Zhou und Yunting Fang. „Formation of extractable organic nitrogen in an agricultural soil: A 15N labeling study“. Soil Biology and Biochemistry 118 (März 2018): 161–65. http://dx.doi.org/10.1016/j.soilbio.2017.12.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Coursindel, Thibault, Daniel Farran, Jean Martinez und Georges Dewynter. „[15N]-Isotopic labeling: a suitable tool to study the reactivity of bis lactams“. Tetrahedron Letters 49, Nr. 5 (Januar 2008): 906–9. http://dx.doi.org/10.1016/j.tetlet.2007.11.159.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

May, Daniel S., Camila M. Crnkovic, Aleksej Krunic, Tyler A. Wilson, James R. Fuchs und Jimmy E. Orjala. „15N Stable Isotope Labeling and Comparative Metabolomics Facilitates Genome Mining in Cultured Cyanobacteria“. ACS Chemical Biology 15, Nr. 3 (21.02.2020): 758–65. http://dx.doi.org/10.1021/acschembio.9b00993.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

XU, Y. Z., V. RAMESH und P. F. SWANN. „ChemInform Abstract: Site-Specific 15N-Labeling of Adenine in DNA for NMR Studies.“ ChemInform 27, Nr. 37 (05.08.2010): no. http://dx.doi.org/10.1002/chin.199637102.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Baxter, Susan M., Terry L. Boose und Jacquelyn S. Fetrow. „15N Isotopic Labeling and Amide Hydrogen Exchange Rates of Oxidized Iso-1-cytochromec“. Journal of the American Chemical Society 119, Nr. 41 (Oktober 1997): 9899–900. http://dx.doi.org/10.1021/ja971337c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Tanio, Michikazu, Takeshi Tanaka und Toshiyuki Kohno. „15N isotope labeling of a protein secreted by Brevibacillus choshinensis for NMR study“. Analytical Biochemistry 373, Nr. 1 (Februar 2008): 164–66. http://dx.doi.org/10.1016/j.ab.2007.10.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Blunt, JW, MP Hartshorn, RG Jensen, AG Waller und GJ Wright. „15N Labeling Studies of the Reactions of 4-t-Butyl-2,6-dimethyl-4-nitrocyclohexa-2,5-dienone and 2,4-Di-t-butyl-6-methyl-4-nitrocyclohexa-2,5-dienone With Nitrogen-Dioxide; the Mechanism of Formation of 2,5,6-Trinitrocyclohex-3-enones“. Australian Journal of Chemistry 42, Nr. 5 (1989): 675. http://dx.doi.org/10.1071/ch9890675.

Der volle Inhalt der Quelle
Annotation:
Reaction of the 15N-labelled 4-nitro dienone (15b) with nitrogen dioxide in benzene gives the 2,5,6-trinitrocyclohex-3-enones (19), (20), (22) and (24) with retention of some 15N-label at C6. Similar reaction of 15N-labelled 4-nitro dienone (18b) gives the 2,5,6-trinitrocyclohex-3-enones (30), (31), (34) and (38), and the 2-hydroxy-5,6- dinitrocyclohex-3-enones (33) and (37) all with retention of some 15N-label at C6. These results are rationalized in terms of 2,5-addition of nitrogen dioxide to corresponding intermediate 6-nitro dienones (27) and (40).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Berditsch, Marina, Sergii Afonin, Anna Steineker, Nataliia Orel, Igor Jakovkin, Christian Weber und Anne S. Ulrich. „Fermentation and Cost-Effective13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis“. Applied and Environmental Microbiology 81, Nr. 11 (20.03.2015): 3593–603. http://dx.doi.org/10.1128/aem.00229-15.

Der volle Inhalt der Quelle
Annotation:
ABSTRACTGramicidin S (GS) is a nonribosomally synthesized decapeptide fromAneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly13C/15N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product ofA. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive13C/15N-labeled amino acids. The most cost-effective production of13C/15N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1%13C-glycerol and 0.5%15N-ammonium sulfate, supplemented with only 0.025% of13C/15N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Voges, Raphael, und Stephan Noack. „Quantification of proteome dynamics in Corynebacterium glutamicum by 15N-labeling and selected reaction monitoring“. Journal of Proteomics 75, Nr. 9 (Mai 2012): 2660–69. http://dx.doi.org/10.1016/j.jprot.2012.03.020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Lyon, David, Maria Angeles Castillejo, Christiana Staudinger, Wolfram Weckwerth, Stefanie Wienkoop und Volker Egelhofer. „Automated Protein Turnover Calculations from 15N Partial Metabolic Labeling LC/MS Shotgun Proteomics Data“. PLoS ONE 9, Nr. 4 (15.04.2014): e94692. http://dx.doi.org/10.1371/journal.pone.0094692.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Ramanathan, Sunita, Basuthkar J. Rao und K. V. R. Chary. „A Novel Approach for Uniform 13C and 15N Labeling of DNA for NMR Studies“. Biochemical and Biophysical Research Communications 290, Nr. 3 (Januar 2002): 928–32. http://dx.doi.org/10.1006/bbrc.2001.6306.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Ariza, Xavier, Jaume Farràs, Carme Serra und Jaume Vilarrasa. „N-Nitration,15N-Labeling, and N-to-N Linking of Hydroxyl-Silylated Pyrimidine Nucleosides“. Journal of Organic Chemistry 62, Nr. 5 (März 1997): 1547–49. http://dx.doi.org/10.1021/jo9615514.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Deleu, Lomme J., Edith Wilderjans, Ingrid Van Haesendonck, Kristof Brijs und Jan A. Delcour. „15N-Labeling of Egg Proteins for Studying Protein Network Formation During Pound Cake Making“. Cereal Chemistry Journal 94, Nr. 3 (Mai 2017): 485–90. http://dx.doi.org/10.1094/cchem-07-16-0183-r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Rodriguez, E., und N. R. Krishna. „An Economical Method for 15N/13C Isotopic Labeling of Proteins Expressed in Pichia pastoris“. Journal of Biochemistry 130, Nr. 1 (01.07.2001): 19–22. http://dx.doi.org/10.1093/oxfordjournals.jbchem.a002957.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Guthertz, Nicolas, Julia Klopp, Aurélie Winterhalter, César Fernández und Alvar D. Gossert. „Auto-inducing media for uniform isotope labeling of proteins with 15N, 13C and 2H“. Journal of Biomolecular NMR 62, Nr. 2 (19.04.2015): 169–77. http://dx.doi.org/10.1007/s10858-015-9931-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Skawinski, William J., Foluso Adebodun, Jung T. Cheng, Frank Jordan und Richard Mendelsohn. „Labeling of tyrosines in proteins with [15N]tetranitromethane, a new NMR reporter for nitrotyrosines“. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1162, Nr. 3 (März 1993): 297–308. http://dx.doi.org/10.1016/0167-4838(93)90294-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Seemann, Janina. „The use of 13C and 15N isotope labeling techniques to assess heterotrophy of corals“. Journal of Experimental Marine Biology and Ecology 442 (April 2013): 88–95. http://dx.doi.org/10.1016/j.jembe.2013.01.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Joubert, Fanny, Osama Musa, David R. W. Hodgson und Neil R. Cameron. „Graft copolymers of hydroxyethyl cellulose by a ‘grafting to’ method: 15N labelling as a powerful characterisation tool in ‘click’ polymer chemistry“. Polymer Chemistry 6, Nr. 9 (2015): 1567–75. http://dx.doi.org/10.1039/c4py01413h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Shestakova, Tatiana S., Sergey L. Deev, Eugene N. Ulomskii, Vladimir L. Rusinov, Mikhail I. Kodess und Oleg N. Chupakhin. „The synthesis of labeling azolo-1,2,4-triazines with 15N isotope in azole and azine parts“. Arkivoc 2009, Nr. 4 (28.09.2008): 69–78. http://dx.doi.org/10.3998/ark.5550190.0010.407.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie