Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Β-amyloid structures“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Β-amyloid structures" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Β-amyloid structures"
Taguchi, Yuzuru, Hiroki Otaki und Noriyuki Nishida. „Mechanisms of Strain Diversity of Disease-Associated in-Register Parallel β-Sheet Amyloids and Implications About Prion Strains“. Viruses 11, Nr. 2 (28.01.2019): 110. http://dx.doi.org/10.3390/v11020110.
Der volle Inhalt der QuelleChatani, Eri, Keisuke Yuzu, Yumiko Ohhashi und Yuji Goto. „Current Understanding of the Structure, Stability and Dynamic Properties of Amyloid Fibrils“. International Journal of Molecular Sciences 22, Nr. 9 (21.04.2021): 4349. http://dx.doi.org/10.3390/ijms22094349.
Der volle Inhalt der QuellePaulus, Agnes, Anders Engdahl, Yiyi Yang, Antonio Boza-Serrano, Sara Bachiller, Laura Torres-Garcia, Alexander Svanbergsson et al. „Amyloid Structural Changes Studied by Infrared Microspectroscopy in Bigenic Cellular Models of Alzheimer’s Disease“. International Journal of Molecular Sciences 22, Nr. 7 (26.03.2021): 3430. http://dx.doi.org/10.3390/ijms22073430.
Der volle Inhalt der QuelleSulatskaya, Anna I., Anastasiia O. Kosolapova, Alexander G. Bobylev, Mikhail V. Belousov, Kirill S. Antonets, Maksim I. Sulatsky, Irina M. Kuznetsova, Konstantin K. Turoverov, Olesya V. Stepanenko und Anton A. Nizhnikov. „β-Barrels and Amyloids: Structural Transitions, Biological Functions, and Pathogenesis“. International Journal of Molecular Sciences 22, Nr. 21 (20.10.2021): 11316. http://dx.doi.org/10.3390/ijms222111316.
Der volle Inhalt der QuelleAlperstein, Ariel M., Joshua S. Ostrander, Tianqi O. Zhang und Martin T. Zanni. „Amyloid found in human cataracts with two-dimensional infrared spectroscopy“. Proceedings of the National Academy of Sciences 116, Nr. 14 (20.03.2019): 6602–7. http://dx.doi.org/10.1073/pnas.1821534116.
Der volle Inhalt der QuelleFreitas, Raul O., Adrian Cernescu, Anders Engdahl, Agnes Paulus, João E. Levandoski, Isak Martinsson, Elke Hebisch et al. „Nano-Infrared Imaging of Primary Neurons“. Cells 10, Nr. 10 (27.09.2021): 2559. http://dx.doi.org/10.3390/cells10102559.
Der volle Inhalt der QuelleYu, Xiang, und Jie Zheng. „Polymorphic Structures of Alzheimer's β-Amyloid Globulomers“. PLoS ONE 6, Nr. 6 (07.06.2011): e20575. http://dx.doi.org/10.1371/journal.pone.0020575.
Der volle Inhalt der QuelleYakupova, Elmira I., Liya G. Bobyleva, Sergey A. Shumeyko, Ivan M. Vikhlyantsev und Alexander G. Bobylev. „Amyloids: The History of Toxicity and Functionality“. Biology 10, Nr. 5 (01.05.2021): 394. http://dx.doi.org/10.3390/biology10050394.
Der volle Inhalt der QuelleTycko, Robert. „Molecular structure of amyloid fibrils: insights from solid-state NMR“. Quarterly Reviews of Biophysics 39, Nr. 1 (Februar 2006): 1–55. http://dx.doi.org/10.1017/s0033583506004173.
Der volle Inhalt der QuelleFlynn, Jessica D., und Jennifer C. Lee. „Raman fingerprints of amyloid structures“. Chemical Communications 54, Nr. 51 (2018): 6983–86. http://dx.doi.org/10.1039/c8cc03217c.
Der volle Inhalt der QuelleDissertationen zum Thema "Β-amyloid structures"
Newby, Francisco Nicolas. „Structural studies of the Alzheimer's amyloid β peptide“. Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607712.
Der volle Inhalt der QuelleSiegemund, Thomas. „Structure and properties of drug-loaded polymeric nanoparticles targeting β-amyloid“. Doctoral thesis, Universitätsbibliothek Leipzig, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-70212.
Der volle Inhalt der QuelleDaou, Dania. „Intégration de moteurs moléculaires photoactivables dans des gels supramoléculaires“. Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAF021.
Der volle Inhalt der QuelleThis thesis explored the integration of light-driven synthetic molecular motors in supramolecular gel networks. The main goal was to achieve reversible macroscopic motion by exploiting both the unidirectional rotation of molecular motors and the reversible nature of supramolecular interactions. Highly functionalized molecular motors have been synthesized and integrated as crosslinking units in supramolecular gel networks of diphenylalanine and poly(γ- benzyl-L-glutamate) peptides, as well as DNA oligonucleotides. Activation of the unidirectional rotation of molecular motors by light, allowed the production of nanomechanical work which is sufficient to disrupt supramolecular interactions in peptide-based gel networks leading to contraction or melting of the gel material at the macroscopic scale. Thanks to the reversible supramolecular interactions, the initial gel material was recovered in the dark, either spontaneously or by applying a thermal stimulus. The systems studied in this thesis represent a novel class of materials operating in dissipative out-of-equilibrium conditions, holding promise of applications in various fields such as biology, medicine and material science
Zhu, Maximillian. „Computational studies of the Alzheimer's amyloid-β peptide : from structural ensembles to therapeutic leads“. Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608056.
Der volle Inhalt der QuelleCozma, Claudia [Verfasser]. „Determination of Primary Structure and Affinity Characterization of Naturally Occurring β-Amyloid Autoantibodies / Claudia Cozma“. Konstanz : Bibliothek der Universität Konstanz, 2014. http://d-nb.info/1079910271/34.
Der volle Inhalt der QuelleWißbrock, Amelie [Verfasser]. „Transient Heme-Protein Interactions: Structural and Functional Studies on Interleukin-36α and Amyloid-β / Amelie Wißbrock“. Bonn : Universitäts- und Landesbibliothek Bonn, 2020. http://d-nb.info/1224270444/34.
Der volle Inhalt der QuelleParaschiv, Gabriela Ioana [Verfasser]. „Structural identification and quantification of β-amyloid polypeptide-ligand interactions using affinity-mass spectrometric methods / Gabriela Ioana Paraschiv“. Konstanz : Bibliothek der Universität Konstanz, 2012. http://d-nb.info/1025637240/34.
Der volle Inhalt der QuelleCerda, Muñoz Fabian Esteban [Verfasser], Wolfgang [Akademischer Betreuer] Baumeister, Bernd [Gutachter] Reif und Wolfgang [Gutachter] Baumeister. „Structural study of the Amyloid β cytotoxicity / Fabian Esteban Cerda Muñoz ; Gutachter: Bernd Reif, Wolfgang Baumeister ; Betreuer: Wolfgang Baumeister“. München : Universitätsbibliothek der TU München, 2021. http://d-nb.info/1230552790/34.
Der volle Inhalt der QuelleDammers, Christina [Verfasser], Dieter [Gutachter] Willbold und Henrike [Gutachter] Heise. „Structural analysis and aggregation of Alzheimer’s disease related pyroglutamate-modified amyloid-β / Christina Dammers ; Gutachter: Dieter Willbold, Henrike Heise“. Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2017. http://d-nb.info/1132771757/34.
Der volle Inhalt der QuelleDammers, Christina Verfasser], Dieter [Gutachter] [Willbold und Henrike [Gutachter] Heise. „Structural analysis and aggregation of Alzheimer’s disease related pyroglutamate-modified amyloid-β / Christina Dammers ; Gutachter: Dieter Willbold, Henrike Heise“. Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2017. http://d-nb.info/1132771757/34.
Der volle Inhalt der QuelleBuchteile zum Thema "Β-amyloid structures"
Tycko, Robert. „β-Amyloid Fibril Structures, In Vitro and In Vivo“. In Proteopathic Seeds and Neurodegenerative Diseases, 19–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35491-5_2.
Der volle Inhalt der QuelleBukauskas, V., V. Strazdienė, A. Šetkus, S. Bružytė, V. Časaitė und R. Meškys. „β-Sheeted Amyloid Fibril Based Structures For Hybrid Nanoobjects On Solid Surfaces“. In Springer Proceedings in Physics, 61–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-95930-4_10.
Der volle Inhalt der Quellevan Andel, A. C. J., P. R. Hol, J. H. van der Maas, E. T. G. Lutz, H. Krabbendam und E. Gruys. „Reaggregation of Bovine Amyloid a Fibril Components to β-Pleated Sheet Fibrillar Structures“. In Amyloidosis, 39–48. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2199-6_5.
Der volle Inhalt der QuelleInouye, Hideyo, und Daniel A. Kirschner. „Refined Fibril Structures: The Hydrophobic Core in Alzheimer's Amyloid β-Protein and Prion as Revealed by X-ray Diffraction“. In Novartis Foundation Symposia, 22–46. Chichester, UK: John Wiley & Sons, Ltd., 2007. http://dx.doi.org/10.1002/9780470514924.ch3.
Der volle Inhalt der QuelleMuñoz, Francisco J., und Nibaldo C. Inestrosa. „Acetylcholinesterase Enhances the Neurotoxicity of β-Amyloid Fibrils“. In Structure and Function of Cholinesterases and Related Proteins, 182. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-1540-5_48.
Der volle Inhalt der QuelleMeier, Beat H., und Anja Böckmann. „Solid-State NMR Structure of Amyloid-β Fibrils“. In Methods in Molecular Biology, 53–62. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2597-2_5.
Der volle Inhalt der QuelleDe Ferrari, Giancarlo V., und Nibaldo C. Inestrosa. „Identification of an Acetylcholinesterase Fragment that Promotes Alzheimer β-Amyloid Fibril Formation“. In Structure and Function of Cholinesterases and Related Proteins, 185–86. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-1540-5_50.
Der volle Inhalt der QuelleGröbner, Gerhard, Clemens Glaubitz, Philip T. F. Williamson, Timothy Hadingham und Anthony Watts. „Structural insight into the interaction of amyloid-β peptide with biological membranes by solid state NMR“. In Focus on Structural Biology, 203–14. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-017-2579-8_18.
Der volle Inhalt der QuellePateras, Joseph, Ashwin Vaidya und Preetam Ghosh. „Physics-Informed Bias Method for Multiphysics Machine Learning: Reduced Order Amyloid-β Fibril Aggregation“. In Recent Advances in Mechanics and Fluid-Structure Interaction with Applications, 157–65. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14324-3_7.
Der volle Inhalt der QuelleKeppler, Julia K., Timon R. Heyn, Jacqueline Lux, Therese Ruhmlieb, Laura Meissner, Loes J. G. Hoppenreijs, Anja Steffen-Heins und Karin Schwarz. „(Amyloid) Protein Aggregates from β-Lactoglobulin and Their Behavior Along the Process Chain“. In Dispersity, Structure and Phase Changes of Proteins and Bio Agglomerates in Biotechnological Processes, 201–39. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-63164-1_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Β-amyloid structures"
Park, Jiyong, Byungnam Kahng und Wonmuk Hwang. „Supramolecular Structure and Stability of the GNNQQNY β-Sheet Bilayer Filament: A Computational Study“. In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-175588.
Der volle Inhalt der QuelleAthamneh, Ahmad, und Justin Barone. „Enzyme-Mediated Self-Assembly of Highly Ordered Structures From Disordered Proteins“. In ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-540.
Der volle Inhalt der QuelleShutikov, A. A., G. M. Arzumanyan, K. Z. Mamatkulov, E. Arynbek und D. S. Zakrytnaya. „ANALYSIS OF THE SECONDARY STRUCTURE OF AΒ (1-42) PEPTIDE IN THE AMIDE I REGION BY RAMAN SPECTROSCOPY“. In X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-220.
Der volle Inhalt der QuelleSouza, Giordana S., Samara O. Pinto und Ana Maria Marques da Silva. „Evaluation of MR-less in brain amyloid-β PET Centiloid quantification“. In Biomedical Applications in Molecular, Structural, and Functional Imaging, herausgegeben von Barjor S. Gimi und Andrzej Krol. SPIE, 2022. http://dx.doi.org/10.1117/12.2611904.
Der volle Inhalt der QuelleLomakin, Aleksey, David B. Teplow, Daniel A. Kirschner und George B. Benedek. „Nucleation and Growth of Amyloid β-Protein Fibrils: Detection of Nuclei and Quantitation of Rate Constants“. In Photon Correlation and Scattering. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/pcs.1996.sab.3.
Der volle Inhalt der QuelleSilva, Letícia Freitas de Castro, Elisa Pinheiro Weber, Gleice Silva Toledo und Josiane Fonseca Almeida. „New pharmacological strategies for the treatment of alzheimer’s disease“. In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.097.
Der volle Inhalt der QuelleChiu, K. C., L. Y. Yu, J. N. Yih und S. J. Chen. „Investigating the structural changes of β-amyloid peptide aggregation using attenuated-total-reflection surface-enhanced Raman spectroscopy“. In Biomedical Optics (BiOS) 2007, herausgegeben von Tuan Vo-Dinh und Joseph R. Lakowicz. SPIE, 2007. http://dx.doi.org/10.1117/12.701757.
Der volle Inhalt der Quelle„818 BGRS/SB-2022 The low-molecular-weight ligands of human serum albumin, promoting its interaction with amyloid β peptide“. In Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-475.
Der volle Inhalt der Quelle„All-D-enantiomeric peptide designed for Alzheimer´s disease treatment dynamically interacts with amyloidogenic region of membrane-bound amyloid-β peptide precursor“. In Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-175.
Der volle Inhalt der Quelle„BGRS/SB-2022 779 In search for the peptide/protein ligands of human serum albumin able to affect its interaction with amyloid β peptide“. In Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-449.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Β-amyloid structures"
Wing Hei Cheng, Cecily, Matthew Hai Heng Chung und Joseph Chi Fung Ng. Structural Dynamics of Amyloid-β Aggregation in Alzheimer’s Disease: Computational and Experimental Approaches. Journal of Young Investigators, Dezember 2016. http://dx.doi.org/10.22186/jyi.31.6.44-50.
Der volle Inhalt der QuelleZhang, Yu, Chaoliang Sun, Hengxi Xu, Weiyang Shi, Luqi Cheng, Alain Dagher, Yuanchao Zhang und Tianzi Jiang. Connectivity-Based Subtyping of De Novo Parkinson Disease: Biomarkers, Medication Effects and Longitudinal Progression. Progress in Neurobiology, April 2024. http://dx.doi.org/10.60124/j.pneuro.2024.10.04.
Der volle Inhalt der Quelle